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Abstract—Radiation characteristics of shipborne antennas above
lossy half-space are studied using the multilevel fast multipole
algorithm (MLFMA). The near terms in the MLFMA are evaluated by
using the rigorous half-space dyadic Green’s function, computed via the
method of complex images. The far MLFMA interactions employ an
approximate dyadic Green’s function via a direct-radiation term plus
a single real image, with the image amplitude characterized by the
polarization-dependent Fresnel reflection coefficient. Finally, radiation
patterns of an ultra-shortwave antenna mounted on a realistic 3-D ship
over seawater are presented and compared with a rigorous method-of-
moments (MoM) solution.

1. INTRODUCTION

On electrically large ship-platforms, more and more antennas are used
for different purposes. The platforms degrade the performance of these
platform-mounted antennas. On the other hand, the environment
(such as seawater) also affects the properties of the antennas. In order
to simulate accurately the radiation characteristics of the shipborne
antennas, we have to consider both the platforms and seawater (Fig. 1).

Electromagnetic scattering and radiating from targets in half-
space has constituted a problem of long-term interest. Considering
numerical modeling of such problems, there has been interest in
method of moments (MoM) [1–3], finite-element method (FEM) [4]
and finite difference time domain method (FDTD) [5, 6]. The MoM,
FEM and FDTD algorithms can handle such targets in principle, but
memory requirements and computation time become excessive. The
high-frequency asymptotic techniques (e.g., PO, GTD, and UTD) [7, 8]
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Figure 1. Cross section through shipborne antenna model over
seawater.

can handle the large platforms, however they are not applicable or are
difficult to implement to the half-space problems.

In [9–11], Geng and colleagues developed an approximate means
of handling the dyadic half-space Green’s function, with application
to the fast multipole method (FMM) and the multilevel fast multipole
algorithm (MLFMA), which were originally developed for targets in
free space [12–22]. In their works, the near MLFMA terms are
evaluated via the use of the exact dyadic Green’s function, the
latter evaluated efficiently via the complex-image technique [23]. The
far terms, evaluated efficiently via the clustering algorithm, employ
the asymptotic form of the dyadic Green’s function. As elucidated
further in the following, each component of the approximate Green’s
function is expressed in terms of the direct-radiation term plus
radiation from an image source in real space [9–11]. The former
accounts for the radiation of currents into the medium in which it
resides, while the latter accounts for interactions with the half-space
interface. The computational complexity of O(N logN), both in
RAM and CPU (per iteration), remains unchanged compared to the
free-space version [11]. However, Geng only applied the half-space
FMM/MLFMA to scattering problems.

In this paper, the half-space MLFMA is applied to analysis of the
radiation properties of shipborne antennas above seawater. A rigorous
method of moments (MoM) [24] is achieved to validate the formula and
the algorithm. Finally the radiation patterns for an ultra-shortwave
antenna mounted on a full-scale ship model are obtained and discussed.

2. THEORY

2.1. Integral Equation and Half-space MoM Formulation

For solving the problem of scattering from an arbitrarily shaped 3-D,
perfectly electric conducting (PEC) target situated above (i.e., target
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in layer i = 1) or buried (i.e., target in layer i = 2) in a lossy half space
(Fig. 1), we utilize the CFIE [14]

t̂ ·
[
αEinc (r) + ηi(1 − α)n̂ × H inc (r)

]∣∣
r∈S

=

αt̂·
[
−αEscat (r)+ηi(1−α)Js (r)−ηi(1−α)n̂×Hscat

(
r ∈ S+

)]
(1)

with the scattered fields (inside half space i, in which the target is
located) given by [1]

Escat (r) = −jωµi

[
Ī +

∇∇
k2

i

]
·
∫∫

r′∈S

ḠAii

(
r, r′) · J (

r′) dS′

= −jωµi

∫∫
r′∈S

K̄Aii

(
r, r′) · J (

r′) dS′

+
∇

jωεi

∫∫
r′∈S

Kii
φe

(
r, r′)∇′ · J

(
r′) dS′ (2a)

Hscat (r) = ∇×
∫∫

r′∈S

ḠAii

(
r, r′) · J (

r′) dS′. (2b)

The unit vectors n̂ and t̂ are perpendicular and tangential to the
scatterer surface, respectively, r is on and r ∈ S+ is an infinitesimal
distance outside the (closed) target surface. εi = ε′i − jσi/ω, µi,
and ki represent (in general complex) the permittivity, permeability,
and wavenumber of the medium in which the target resides, and ω is
the angular frequency (with a time dependence exp jωt assumed and
suppressed). Details on the Green’s function dyadics ḠAii and K̄Aii,
as well as the scalar Green’s function Kii

φe have been given by Michalski
and Zheng in [1], where we use their formulation C. The CFIE in (1) is
valid for a more general layered medium [1], but here we only consider
the half-space problem for simplicity.

For near interactions (MoM part of the MLFMA), the evaluation
of the impedance matrix elements, including the proper handling
of self-term singularities and near singularity extraction, is done
similar to the MoM literature [25]. The dyadic half-space Green’s
function is evaluated rigorously using the method of discrete
complex images [23], thereby avoiding direct numerical evaluation of
Sommerfeld integrals [1]. Impedance matrix elements representing
these near interactions are stored in a sparse matrix called [Znear].
The method of complex images and explicit equations for the MoM
impedance matrix elements can be found in literatures [1, 23], and
therefore, we do not repeat the details.
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Figure 2. Cross section through multi-level clustering geometry in
3-D half-space MLFMA.

2.2. Free-space and Half-space MLFMA

The half-space dyadic Green’s function can be split into a term Īgi

representing the “direct” radiation between source and observation
point (as in free space, but using in general a complex wave number
ki) and a remaining dyadic ∆ḠAii accounting for interactions with the
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interface (i.e., here ∆ is not an operator) [9–11].

ḠAii

(
r, r′) = Īgi

(
r, r′)+∆ḠAii

(
r, r′) = Ī

e−jki|r−r′|

4π |r−r′| +∆ḠAii

(
r, r′)

(3)

While the dyadic ∆ḠAii needs some further investigation (see
below), the free-space FMM [12, 13] or MLFMA [14] can be applied
to the “direct” term, with only minor changes due to the (in general)
lossy background. The free-space FMM and MLFMA are based on
the addition theorem [12], leading to the (propagating) plane wave
representation [12]

gi

(
r, r′) =

e−jki|r−r′|

4π |r − r′|

≈ −jki

(4π)2

∫∫
4π

e−jkik̂·(r−rm)TL

(
kiRm′m, k̂ · R̂m′m

)

·e+jkik̂·(r′−rm′ )d2k̂ (4a)

TL

(
kiRm′m, k̂·R̂m′m

)
=

L∑
l=0

(−j)l(2l+1)h(2)
l (kiRm′m)Pl

(̂
k·R̂m′m

)

(4b)

R̂m′m = Rm′m/Rm′m = Rm′m/
√

Rm′m · Rm′m (4c)

of the scalar Green’s function. The distance vector R = r−r′ has been
subdivided into a vector from the source point r′ to the center r′

m of a
“source group”, a vector from an “observation group” center rm to the
observation point r, and a vector connecting the group centers Rm′m
(Fig. 1, where in this Section 2.2, we write m′ = m′

γ , m = mγ , and
Rm′m = Rm′γmγ for simplification)

R = r − r′ = (r − rm) + Rm′m −
(
r′ − r′

m

)
= Rm′m + d. (5)

Using the expansion (4), the elements of the far interaction
impedance matrix (i.e., for Rm′m sufficiently large) in the context of a
free-space scattering problem can be written as [14]

Znn′ =
ωµiki

(4π)2

∫∫
4π

Wmα

(
k̂
)
· TL

(
kiRm′m, k̂ · R̂m′m

)
· Bm′α′

(
k̂
)
d2k̂

(6)
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Bm′α′

(
k̂
)

=
[
Ī − k̂k̂

]
·
∫∫

r′∈S′n

bn′(m′,α′)
(
r′) e+jkik̂·(r′−rm′ )dS′ (7)

Wmα

(
k̂
)

= α
[
Ī − k̂k̂

]
·
∫∫

r∈Sn

wn(m,α) (r) e−jkik̂·(r−rm)dS′dS

+ (1 − α) k̂ ×
∫∫

r∈Sn

n̂× wn(m,α) (r) e−jkik̂·(r−rm)dS (8)

where (7) and (8) represent the far-field radiation pattern of the basis
functions and weighting pattern of the testing functions, respectively.

For a half-space FMM/MLFMA, it is essential to include the
effects of the far interface interactions. However, that the number
of terms L required for convergence can be prohibitively large for
general complex source points, undermining the efficiency of using (4)
for far interface interactions in the context of the discrete complex-
image technique [9–11].

An alternative (though approximate) formulation is described
in the following. While the half-space dyadic Green’s function is
rigorously accounted for in the near interaction matrix, far interactions
are often less sensitive to approximations in the Green’s function [9–11].
The FMM has been successfully extended to the scattering from a PEC
object above or buried in a half space by employing the asymptotic
form of the Green’s function [11] for far interactions. The asymptotic
form of the Green’s function is represented utilizing a single real image
at

[
Ī − 2ẑẑ

]
· r′ (assuming the interface at z = 0) with its polarization

dependent magnitude given by the reflection dyadic [11]

R̄
(
k̂
)

= ĥĥ
 ←
Γ

TE

i

(
k̂
)

+
[
Ī − ĥĥ

]  ←
Γ

TM

i

(
k̂
)

with ĥ =
ẑ × k̂∣∣∣ẑ × k̂

∣∣∣ .
(9)

Since this far-field reflection coefficient approximation cannot account
for surface waves, the MLFMA presented here is valid for targets
situated entirely within a single source layer (not the general layered
medium as in [1]).

Therefore, in addition to the accurate calculation of the half-
space dyadic Green’s function in the near interaction matrix [Znear]
(Section 2.1), the half-space MLFMA only requires the definition of
a single set of real image sources (Fig. 1), which can be handled
similarly to real sources. Generalizing the free-space MLFMA [14] to
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a half-space MLFMA is now straightforward. Besides some additional
operations in the matrix-vector product [11], the preprocessing stage
has to include calculations of the translation operators

TL

(
kiR

I
m′m, k̂·R̂I

m′m

)
=

L∑
l=0

(−j)l (2l+1)h(2)
l

(
kiR

I
m′m

)
Pl

(
k̂·R̂I

m′m

)

(10)

between image cube and observation cube centers for all non-nearby
cubes at all levels, as well as the Fourier transforms

BI
m′α′

(
k̂
)

=
[
Ī − k̂k̂

]
·
∫∫

r′∈S′n

[
Ī − 2ẑẑ

]

·bn′(m′,α′)
(
r′) · e+jkik̂·[Ī−2ẑẑ]·(r′−rm′ )dS′ (11)

of the image expansion functions
[
Ī − 2ẑẑ

]
· b′n (r′), where RI

m′m is
a vector from the image source group center rI

m′ to the observation
group center (Fig. 1), and the dyadic Ī − 2ẑẑ accounts for the relative
orientation and location of the image expansion functions, respectively.

3. NUMERICAL RESULTS AND DISCUSSION

The algorithm code of this work is written in Fortran format and
run on a PC (Pentium IV 2.8 GHz CPU and 2.0 GB Memory). The
accuracy of the MLFMA for the target in this section is verified through
comparison with results computed via a rigorous MoM algorithm [24].
The BiCGStab (l) combined with block-diagonal preconditioner is
utilized as the solver in the MLFMA, and a direct (LU-decomposition)
solver in the MoM solution.

Consider a ship situated over lossy seawater with εr = 80 and
σ = 1 S/m, as shown in Fig. 3. The model is 153 m in length and
16.5 m in width. A 30-MHz λ/4 monopole antenna is positioned on
the model as shown in Fig. 3. We consider delta-gap excitation at the
surface-wire junction. The surface of the ship is represented by 7648
planar triangles (8 basis functions per wavelength), and the antenna is
divided into 14 segments.

Figure 4 shows the effect of seawater on the patterns of shipborne
antenna. In Fig. 4, FS is short for Free-Space, and HS for Half-Space.
In xoz and yoz planes, only the patterns in z > 0 space are given for
half-space results, because we are interested in the radiation properties
in air. From comparison, it is observed that the free-space and half-
space MLFMA results agree very well with the corresponding MoM
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wire antenna

Figure 3. Shipborne antenna model over seawater.
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Figure 4. Normalized radiation patterns of shipborne antenna over
seawater.
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computed ones, respectively. Furthermore, the main lobe and side
lobes of half-space radiation patterns are affected by the conduction
coefficients and dielectric constants of seawater, especially in the range
30◦ ≤ θ ≤ 90◦, compared to the free-space case. Therefore, both the
ship platform and seawater should be considered in the analysis of
shipborne antennas.

The memory requirement and the CPU time are listed in
Table 1 (The convergence precision for BiCGStab (l = 10) is 10−3).
By comparison, it is observed that the free-space and half-space
MLFMA achieve the same accuracy as the corresponding MoM version,
respectively, but require far less simulation time and memory resources.
With the above construct in Section 2.2, the real images introduce
a new set of source clusters, and therefore, the half-space MLFMA
requires slightly (about 43% in this example) more memory and
about twice the computation time compared to the free-space version.
However, The computational complexity of O(N logN), both in RAM
and CPU (per iteration), remains unchanged compared to the free-
space version [11]. The advantages of the MLFMA can be clearly seen
when the electrical size of the object increases with the frequency.

Table 1. Performance comparison of MLFMA and MoM.

Algorithm Memory (MB) Time (sec)
free-space MoM 1003.6 2973.7
half-space MoM 1003.6 3905.2

free-space MLFMA 113.5 197.2
half-space MLFMA 162.8 345.6

We do not consider the portion under seawater for several reasons.
First, as mentioned in Section 2.2, the half-space MLFMA presented
here is invalid for targets crossing the half-space interface. Second,
the portion under the ship broad has little effect on the radiation
properties of the shipborne antennas [26]. Finally, meshing the portion
over seawater leads to fewer unknowns compared to meshing the entire
model.

4. CONCLUSIONS

Seawater effects have been considered for the analysis of electromag-
netic radiations from shipborne antenna. From the results, it is clearly
seen that the half-space radiation patterns are affected seriously by



300 Zhao, Liang, and Liang

the conduction coefficients and dielectric constants of seawater. The
results presented here indicate that the seawater effects must be ac-
counted for in many practical scenarios.

Within the context of non-nearby cluster computations, in-
teraction with the half space is accounted for approximately via
polarization-dependent images located at real spatial locations. In ad-
dition, the near interactions in the half-space MLFMA are treated via
a rigorous analysis of the dyadic Green’s function, here computed via
the method of complex images. It has been found that such a rigor-
ous analysis of the near interactions essential for generating accurate
results.
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