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Abstract—This paper proposes an improved adaptive approach
involving Bacterial Foraging Algorithm (BFA) to optimize both the
amplitude and phase of the weights of a linear array of antennas for
maximum array factor at any desired direction and nulls in specific
directions. The Bacteria Foraging Algorithm is made adaptive using
principle of adaptive delta modulation. To show the improvement in
making the algorithm adaptive, results for both adaptive and non-
adaptive algorithms are given. It is found that Adaptive Bacteria
Foraging Algorithm (ABFA) is capable of improving the speed of
convergence as well as the precision in the desired result.

1. INTRODUCTION

The placement of radiating elements in space determines the various
qualities of radiation such as direction, directivity, beamwidth, energy
in main beam etc. These qualities get better and better as we
move from single element to linear array to planar array [1]. The
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radiating system may have its maximum radiation in any direction
depending on the relative positions of dipoles (or antenna elements).
The requirement is to find suitable excitation weights of antenna
elements in space to achieve maximum radiation in any specified
direction. The radiated field pattern is very much depended on the
excitation to each antenna element. To obtain a desired radiation
pattern in a specified direction, it is required the pattern synthesis
that determines the parameters of an antenna array. In this age of
mobile wireless communication, there are many source of noises to
pollute the desired radiation. It is a tremendous challenge to the
communication system engineers to provide the radiation beam in the
direction of interest nullifying the interference effect thus maximizing
signal to noise interference ratio. Null steering is the very common
and extensively studied methods for array antenna problem [2–9, 32]
controlling either amplitude or phase or both together i.e., complex
weights of the antenna excitation.

Soft computing tools like Genetic algorithm (GA) [10–14] and
Simulated Annealing [15] have become standard procedures for
designing optimized antennas where analytical optimization becomes
tough and does not provide satisfactory result. GA ruled several
years for antenna optimization problems. But search for new
computationally efficient algorithms to handle computationally large
and complex problems are continuing. Apart from the modification
of GA [16–18, 33], new paradigms have been developed. These
are Particle Swarm Optimization (PSO) [19–21, 34, 35], Ant Colony
Optimization [22] and Bacteria Foraging Algorithm (BFA) [23–28].
Among them, BFA being the latest trend that is efficient in optimizing
parameters of the structures. Nowadays Bacteria Foraging technique
is gaining importance in the optimization problems. Because

• Philosophy says, Biology provides highly automated, robust and
effective organism

• Search strategy of bacteria is salutary (like common fish) in nature
• Bacteria can sense, decide and act so adopts social foraging

(foraging in groups)
Above all Search and optimal foraging decision-making of animals

can be used for solving engineering problems. To perform social
foraging an animal needs communication capabilities and it gains
advantages that can exploit essentially the sensing capabilities of the
group, so that the group can gang-up on larger prey, individuals can
obtain protection from predators while in a group, and in a certain
sense the group can forage a type of collective intelligence.

BFA is based on the foraging behavior of Escherichia Coli (E. Coli)
bacteria present in the human intestine [23] and already been in use
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to many engineering problems including antenna arrays [24–30]. In
paper [28], authors have shown the BFA is better than Particle Swarm
Algorithm in terms of convergence, robustness and precision. In [29],
proposed a hybrid approach involving GA and BFA to tune PID
controller (proportional-integral-derivative controller) of an automatic
voltage regulator and has shown the efficiency of this approach for
global optimization problems. Paper [30] has illustrated the faster
settling time and higher robustness with BFA-PID controller. The
array antenna optimization technique is used in paper [26] using
BFA. This paper also discusses the usefulness of BFA and possible
implementation strategy.

In this paper, we have developed an improved Adaptive BFA
(ABFA) that shows the faster convergence compared to normal BFA.

2. BRIEF REVIEW OF BACTERIA FORAGING
OPTIMIZATION TECHNIQUE

The details of BFA are given in [26, 27]. We follow the foraging
technique of a group of bacteria as given in [25]. A group of bacteria
move in search of food and away from noxious elements — A biological
method known as foraging. All bacteria try to move upward the
food concentration gradient individually. At the initial location they
measure the food concentration and then tumble to take a random
direction and swim for a fixed distance and measure the concentration
there. This tumble and swim make one chemotactic step. If the
concentration is greater at next location then they take another step
in that direction. When concentration at next location is lesser that
of previous location they tumble to find another direction and swim
in this new direction. This process is carried out up to a certain
number of steps, which is limited by the lifetime of the bacteria. At
the end of its lifetime the bacteria that have gathered good health
that are in better concentration region divide into two cells. Thus
in the next reproductive step the next generation of bacteria start
from a healthy position. The better half reproduces to generate next
generation where as the worse half dies. This reproduction step is also
carried out a fixed number of times. In the optimization technique
we can take the variable we want to optimize as the location of
bacteria in the search plane (the plane where the bacteria can move).
The specifications such as number of reproductive steps, number
chemotactic steps which are consisted of run (or swim) and tumble,
swim length, maximum allowable swims in a particular direction are
given for a particular problem then the variable can be optimized using
this Bacteria Foraging Optimization technique.
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The E. coli bacteria that are present in our intestines have a
foraging strategy governed by four processes, namely, chemotaxis,
swarming, reproduction, and elimination and dispersal [25].

Chemotaxis: This process is achieved through swimming and
tumbling. Depending upon the rotation of the flagella in each
bacterium, it decides whether it should move in a predefined direction
(swimming) or an altogether different direction (tumbling), in the
entire lifetime of the bacterium. To represent a tumble, a unit length
random direction, φ(j) say, is generated; this will be used to define the
direction of movement after a tumble. In particular,

θi(j + 1, k, l) = θi(j, k, l) + C(i)φ(j) (1)

where θi(j, k, l) represents the ith bacterium at jth chemotactic kth
reproductive, and lth elimination and dispersal step. C(i) is the size
of the step taken in the random direction specified by the tumble. “C”
is termed as the “run length unit”.

Swarming: It is always desired that the bacterium that has
searched the optimum path of food should try to attract other bacteria
so that they reach the desired place more rapidly. Swarming makes the
bacteria congregate into groups and hence move as concentric patterns
of groups with high bacterial density. Mathematically, swarming can
be represented by

JCC =
S∑

i=1

J i
CC

(
θ, θi(j, k, l)

)

=
S∑

i=1

[
−dattract exp

(
−ωattract

p∑
m=1

(
θm − θi

m

)2
)]

+
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i=1

[
hrepellent exp

(
−ωrepellent

p∑
m=1

(
θm − θi

m

)2
)]

(2)

where Jcc (θ, P (j, k, l)) is the cost function value to be added to the
actual cost function to be minimized to present a time varying cost
function. “S” is the total number of bacteria. “p” is the number of
parameters to be optimized that are present in each bacterium. dattract,
ωattract, hrepelent, and ωrepelent are different coefficients that are to be
chosen judiciously.

Reproduction: The least healthy bacteria die, and the other
healthiest bacteria each split into two bacteria, which are placed in the
same location. This makes the population of bacteria constant.

Elimination and Dispersal: It is possible that in the local
environment, the life of a population of bacteria changes either
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gradually by consumption of nutrients or suddenly due to some other
influence. Events can kill or disperse all the bacteria in a region. They
have the effect of possibly destroying the chemotactic progress, but in
contrast, they also assist it, since dispersal may place bacteria near
good food sources. Elimination and dispersal helps in reducing the
behavior of stagnation (i.e., being trapped in a premature solution
point or local optima).

3. ADAPTIVE BACTERIA FORAGING ALGORITHM:
OUR CONTRIBUTION

Bacteria foraging with fixed step size C(i) suffers from two main
problems.

i. If step size is very high then the precision gets low although the
bacterium reaches the vicinity of optimum point quickly. It moves
around the maxima for the remaining chemotactic steps.

ii. If the step size is very small then it takes many chemotactic steps
to reach the optimum point. So the rate of convergence decreases.
For small number of iterations it may not reach optimum position.

Hence the step size of each bacterium is the main determining
factor for both the speed of convergence and error in final output. So
it is desired to control the step size depending on how far the bacteria
is from the optimum point. If deviation is very high then the step
size must be increased and if the deviation is small in which case the
bacterium is close to the optimum point the step size is to be reduced.

Here, we have used the principle of adaptive delta modulation [31]
to control the step size. In adaptive delta modulation the error or
the deviation between the actual signal and the modulated signal is
integrated and the output of the integrator is fed in a voltage controller
that controls the step size. The algorithm we have used in the BFA is
shown in the following block diagram (Figure 1).

Here, X is the parameter to be optimized to obtain the desired
value D. F (X(i, j)) denote the cost function of X of ith bacterium
in jth chemotactic step. E(j) denotes the deviation from the desired
value. S(i, j) is the step size which is modified in each chemotactic
step depending on the deviations in the previous steps. The multiplier
increases or reduces the step size accordingly. Parameter X for next
step is obtained by adding the step size with the previous value.

The proportional adder can be replaced by individual gains in
the paths of errors. Here we have taken the deviations in last three
chemotactic steps and their sum is multiplied with the previous step
size.
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Figure 1. Block diagram for adaptive bacteria foraging algorithm.

We have applied this ABFA in optimizing the antenna array for
its maximum value in desired direction and nulls in the directions of
undesired signals. For comparison, results for both BFA and ABFA
have been provided.

4. PROBLEM STATEMENT

The problem is to optimize the weights of receiving antennas placed
0.5λ apart to obtain array factor maxima in desired direction and
placing nulls in the directions of undesired signals as depicted in
Figure 2.

θ

W(1) W(2) W(3) W(n)

Adder Y(t) 

Figure 2. Receiving antenna system in noisy environment.

The weights W (i) are to be controlled to get desired array factor.
The angle θd is the angle of arrival of the desired signal. θn1 and θn2
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are the two directions from where interfering signals are arriving. In
our desired normalized array factor at θd is 1 and at θn1 and θn2 is 0.
So,

AF (θd) − AF (θn1) − AF (θn2) = 1 (3)
We take AF (θd)−AF (θn1)−AF (θn2) as our cost function which is to
be maximized to 1 (as the maximum value for normalized array factor
need to be 1 in the desired direction and zero value for the undesired
direction) in which case we can completely eliminate interfering signal.
Here both amplitude and phase of weights are optimized to maximize
cost function. Table 1 shows the equivalent terms mapped into BF and
Array Antenna and Table 2 is the parameter value for simulation.

Table 1. Equivalent terms used in the bacteria foraging and space
antenna array.

Number Terms in case of bacteria foraging 
Equivalent term used in this 
application

1 Search plane For each weight complex plane 

2 Placement of bacteria in search plane W(i) for i=1(1)N 

3 Food concentration and scarcity of noxious 
elements (the greater the better) 

Array factor for the given weights ( the 
closer to desired the better) 

4 Tumble 
choosing of random complex number 
for each weight

5 Swim 
Addition of previous weight with step 
size

6 Chemotactic step Change in weights of antennas  

Table 2. Numerical values for simulation.

Number Different parameters Their values 
1 Number of bacteria 10 
2 Number of allowed chemotactic steps 100 
3 Swim length A+jB where A and B are both random 

numbers in the range (-S, S) where S 
is the step size for each weight 

4 Number of reproductive steps 2 

5 Number of elimination and dispersal 
steps

2

5. NUMERICAL RESULTS

We have considered a 6 element array antenna. The desired angle of
arrival is 120 degree. We consider two interfering signals arriving from
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45 degree and 30 degree angle. The array factor is controlled by the
weights (both amplitude and phase) to have a maxima in 120 degree
and nulls in 30 and 45 degrees using the BFA. Results are presented in
this section. Our objective is to get maximum cost function according
to Equation (1). The chemotactic steps required to reach the goal is
plotted in Figure 3(a) and the array factor after optimization is given
in Figure 3(b) when considering the normal BFA [27] having fixed step
size = 0.5. Figure 4 is the same representation for step size = 0.1.

A. Using normal Bacteria Foraging algorithm with fixed
step size = 0.5.
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Figure 3. (a) Change in cost function with number of chemotactic
steps, (b) normalized array factor with step size 0.5. Obtained cost
function = 0.9656.

B. Using normal Bacteria Foraging algorithm with fixed
step size = 0.1
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Figure 4. (a) Change in cost function with number of chemotactic
steps, (b) normalized array factor with step size 0.1. Obtained cost
function = 0.8724.

C. Using proposed adaptive Bacteria Foraging algorithm
with varying step size

From Figure 5, it is clearly observed that ABFA shows faster
convergence compared to normal BFA. In this particular case, ABFA
is almost 5 times faster. Also it can efficiently provide desired result.

D. Adaptive BFA with 3 interfering signals coming from
30 degree, 45 degree and 150 degree with desired signal from
120 degree

Figure 6 is the plot for desired array factor in normalized and logs
scale in dB using adaptive BFA. It is clearly observed that apart from
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Figure 5. (a) Change in cost function with number of chemotactic
steps, (b) normalized array factor with variable step size. Obtained
cost function = 0.9954.

the nulls at 30 and 45 degrees, one additional null at 150-degree occurs.

E. Adaptive BFA with four interfering signals at 30, 45,
150 and 60 degrees

Figure 7 is the plot for array factor in dB. The presence of
additional null at 60 degree proves that adaptive BFA is efficient
enough to nullify nulls in the undesired nulls.

From Figures (3)–(7), it can be observed that adaptive BFA can
efficiently provide the desired array patterns whatever may be the
direction of noise. With increase number of noise sources, the value
of cost function decrease from 0.9954 to 0.9008 using ABFA, which is
only 9% error. But, the Array Factor in the desired direction is around
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Figure 6. (a) Normalized array factor, (b) array factor expressed in
dB for 3 interfering noise signal obtained cost function = 0.9268.

40 dB higher than undesired signal direction. So significant elimination
of interfering signals can be achieved even in a very noisy situation.
In this optimization we have not considered the condition for side lobe
suppression in other direction. That is why in Figure 6 the presence of
side lobe near 140◦ is observed. This could be eliminated by imposing
extra constraints on the side lobe suppression.

The simulation time for all of these cases takes less than 1 minute
in a simple P4 processor with 512 MB RAM and 1.6 GHz machine
under MATLAB 7.0. In the adaptive bacteria foraging algorithm the
rate of convergence as well as the precision is better than normal BFA.
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Figure 7. Normalized array factor expressed in dB for four interfering
noise signals. Obtained cost function = 0.9008.

So this algorithm can be used less number of chemotactic steps that
makes it faster.

6. CONCLUSION

In this paper, null steering in radiation pattern is done using improved
Bacteria Foraging Algorithm by controlling both the amplitude and
phase of weights. The BFA is made adaptive using the principle of
adaptive delta modulation. The results are obtained for 6 element
linear array. Results show that the weights are successfully optimized
to obtain desired array factor. The proposed ABFA also capable
of synthesizing patterns with multiple nulls at any desired direction.
This method is very simple and thus can be used in other optimizing
problems also. The proposed adaptive BFA may provide faster solution
when problem space is large.
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