
Progress In Electromagnetics Research B, Vol. 4, 171–182, 2008

ASYMPTOTIC ITERATION METHOD: A POWERFUL
APPROACH FOR ANALYSIS OF INHOMOGENEOUS
DIELECTRIC SLAB WAVEGUIDES

A. Rostami

Photonic and Nanocrystal Research Lab.
Faculty of Electrical and Computer Engineering
University of Tabriz
Tabriz 51664, Iran

H. Motavali

Faculty of Physics
University of Tabriz
Tabriz 51664, Iran

Abstract—In this paper a novel approach based on Asymptotic
Iteration Method (AIM) is presented to solve analytically the light
propagation through one-dimensional inhomogeneous slab waveguide.
Practically implemented optical slab waveguides based on traditional
techniques are usually inhomogeneous and numerical methods are
used to obtain guided wave characteristics. In this work, we develop
analytical method for modal analysis includes Eigen modes (electric
and magnetic fields distribution) and Eigen values (guided wave
vector) using AIM. The developed method is applied to some especial
examples.

1. INTRODUCTION

Optical integrated methods recently have been considered because of
inherent potential applications in engineering fields. Also, developing
easy basic cell for obtaining optical very large scale integration
(VLSI) is so interesting. For this purpose slab waveguides are basic
interconnection and passive elements in integrated optics. Precise
analysis of dielectric slab waveguides for more understanding physical
concepts is important. Especially, inhomogeneous slab waveguide
which is implemented in practice using conventional fabrication
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methods is common device in integrated optics. For this task, in
this paper we try to develop analytical method for investigation of
inhomogeneous slab waveguides from modal characteristics points of
view. Traditionally numerical methods were used for modal analysis
of inhomogeneous waveguides. But, in these cases concepts of device
operation could not explain clearly.

There are some interesting published papers for analytical analysis
of slab waveguides. We try to review some of them and investigate
advantages and disadvantages of these works.

Second order homogenous linear differential equations appear
widely in literature and there are several techniques for obtaining
exact solutions of them. Recently, a novel approach presented to solve
the light propagation through one dimensional inhomogeneous slab
waveguide analytically based on Nikiforov-Uvarov method [1]. This
mathematical method is based on reducing the second order linear
differential equations to a generalized equation of hyper-geometric type
[1–7].

For clear and easy understanding of operation of these devices
analytical methods are excellent and developed before in similar
engineering fields or physical and mathematical research areas. One
of these analytical methods is based on AIM mathematical approach
which can be used for modal analysis of inhomogeneous waveguides
[8–13].

The supersymmetric quantum mechanical method was applied
to present some useful shape invariant index of refraction having
exact solution for electromagnetic field distribution and Eigen wave
vectors [14]. In this paper the authors developed new method for
evaluation of the inhomogeneous slab waveguides.

Oscillator-like Hamiltonian was used to develop analytical
treatment for investigation of the inhomogeneous slab waveguides
with second order position dependency [15]. In this paper TM-
mode electromagnetic field propagating through oscillator-like index
of refraction profile was compared with Schrödinger equation of
harmonic-oscillator. Then using generalized solution in quantum
mechanics all optical interesting quantities determined exactly. In
this method only oscillator-like index of refraction can be evaluated
analytically.

PT-invariant quantum mechanical tool was used to develop
analytical solution for electromagnetic fields for inhomogeneous
medium having polynomial distribution versus position at most 6th
order [16]. This work presents also a new class of inhomogeneous index
of refraction for slab waveguide with optical characteristics analytically.

A relatively broad class of inhomogeneous index of refraction



Progress In Electromagnetics Research B, Vol. 4, 2008 173

with exact solution was developed in [17] using similarity transformed
harmonic oscillator algebra. The proposed method introduces a wide
class of exactly solvable medium for slab waveguides.

Another analytical approach for modal analysis of inhomogeneous
slab waveguide based on supersymmetric quantum mechanical method
was presented in [18]. In this paper a set of shape invariant index of
refraction was developed. For the obtained set of index of refraction,
the guided wave vector and electric field distribution were calculated
analytically.

There is close relation between general second-order ordinary
differential equations and the Schrödinger equation. Based on the
mentioned relation analytical solution of the Schrödinger equation for
wide class of the potentials can be obtained. For this purpose the AIM
is used [11–13]. Different aspects of slab waveguide including isotropic
and anisotropic cases were considered in [19–25]. In these papers modal
analysis were considered.

There are different alternative methods for investigation of modal
analysis in optical waveguides especially inhomogeneous including
layered media which discussed in [26–35].

Also, electromagnetic wave equation for inhomogeneous linear
media can be converted to general second order ordinary differential
equation in one-dimensional cases. So, analytical evaluation of the
Maxwell equations can be done in this domain. For this purpose
one-dimensional case of linear inhomogeneous media is considered in
this work. Then using AIM approach, relation between the index
of refraction and parameters of the second-order ordinary differential
equation in the case of exactly solvable problems are extracted. Finally,
the characteristic of the inhomogeneous media are obtained.

Organization of the paper is as follows:
Mathematical background is presented in Section 2. In this section
the Maxwell’s equations is arranged in the form of wave equation for
comparing with standard second order homogeneous linear differential
equation. Next, using AIM exact solution of the wave equation is
obtained. Results and discussion of the presented method is presented
in Section 3. Finally, the paper ends with a short conclusion.

2. MATHEMATICAL BACKGROUND

In this section mathematical background is presented for management
of the light propagation through inhomogeneous slab waveguide. We
consider this subject in the next two sub-sections. First, we manipulate
the Maxwell’s equations to review the wave equation in inhomogeneous
slab waveguides. Secondly, AIM is used to obtain analytical solution
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of the general homogeneous second order differential equations.

2.1. Light Propagation through Inhomogeneous Media

We first consider Maxwell’s equations with a plan wave incident upon
an inhomogeneous slab waveguides as shown in Fig. 1.

Figure 1. Schematic of slab waveguide.

For simplicity, we put the x-z plan in the incidence plan, such
that ∂/∂y = 0. In addition, optical characteristics, permittivity
ε(x) and permeability µ(x), are supposed as functions of slab’s height
x. Using the Maxwell’s equation and considering the slab waveguide
geometry, we obtain a second order differential equation for TE-Mode
of electromagnetic field in inhomogeneous waveguides. Actually, we
have two independent TE and TM waves in this two dimensional space.
In principle, since these two modes are similar to each other; so, we
just consider TM mode. Now, let us start by introducing the plan wave
as especial solution of the wave equation

H = H(x)ei(ωt−kz),

and the following forms for the Maxwell equations

∇× E = −iωµ(x)H, ∇× H = iωε(x)E,

in which, H(x) is y-component of magnetic field. Using mathematical
combination of the Maxwell’s equations, one gets

∇×
(
∇× H

ε(x)

)
= ω2µ(x)H, (1)

where, we have assumed that there are no any charge density (∇·D =
0) and magnetic monopole (∇ · B = 0). Eq. (1) leads to the following
differential equation

H′′(x) − ε′(x)
ε(x)

H′(x) +
[
ω2µ(x)ε(x) − k2

]
H(x) = 0. (2)
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In this equation, the prime indicates differentiation with respect to
x. This is a second order differential equation, which can be exactly
solved for some functions ε(x) and µ(x). In the next section, we will
introduce an appropriate mathematical method for this purpose.

2.2. Asymptotic Iteration Method

AIM is proposed for obtaining the exact solution of a second order
differential equation in the following form

Y ′′(x) − λ0(x)Y ′(x) − s0(x)Y (x) = 0, (3)

where λ0(x) �= 0 and s0(x) are coefficients of the differential equation
and are well defined functions as well as sufficiently differentiable.
In order to obtain a general solution to the equation the following
procedure is supposed.

By differentiating Eq. (3) with respect to x one finds

Y ′′′(x) − λ1(x)Y ′(x) − s1(x)Y (x) = 0,

where λ1(x) = λ′
0 + λ2

0 + s0 and s1(x) = s′0 + s0λ0 are new coefficients
related to the coefficients in the original differential equation.

The second derivative of Eq. (3) leads to

Y ′′′′(x) − λ2(x)Y ′(x) − s2(x)Y (x) = 0,

where λ2(x) = λ′
1+λ1λ0+s1 and s2(x) = s′1+s0λ1 are new coefficients

appeared in new version of the basic differential equation.
Finally, by taking mth derivative of Eq. (3) one obtains the

following equation:

Y (m)(x) − λm−2(x)Y ′(x) − sm−2(x)Y (x) = 0, (4)

where

λm(x) = λ′
m−1 + λm−1λ0 + sm−1,

sm(x) = s′m−1 + s0λm−1 (5)
m = 1, 2, . . . .

Clearly, the following relation can be obtained from Eq. (4),

Y (m+2)(x)
Y (m+1)(x)

=
λm

[
Y ′(x) +

sm

λm
Y (x)

]

λm−1

[
Y ′(x) +

sm−1

λm−1
Y (x)

] , (6)
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and by introducing the asymptotic aspect of the iteration method for
sufficiently large value of m

sm

λm
=

sm−1

λm−1
≡ α. (7)

Consequently Eq. (6) reduces to following simple form

Y (m+2)(x)
Y (m+1)(x)

=
λm

λm−1
. (8)

Clearly, by integrating (8), we find

Y (m+1)(x) = Ce
∫ λm(x)

λm−1(x)
dx

, (9)

where C is the integration constant. Using relation (5) and the
definition of (7) one can rewrite (9) as follows

Y (m+1)(x) = Cλm−1(x)e
∫

[α(x)+λ0(x)]dx (10)

Substituting (10) into (4) leads to the first order differential equation

Y ′(x) + αY (x) − Ce
∫

[α+λ0(x)]dx = 0.

The general solution of the last deferential equation is

Y (x) = e−
∫

α(x)dx[C ′ + C

∫
e
∫

[λ0(x)+2α(x)]dxdx], (11)

where C ′ is a new integration constant.
Finally, the energy eigenvalues are obtained from the roots of the

following condition

λm(x)sm−1(x) − λm−1(x)sm(x) = 0 m = 1, 2, 3, . . . . (12)

2.3. Some Examples

Now, we use AIM to obtain the exact solutions (Eigenvalues and
Eigenfunctions) of Eq. (2) for some given permittivity and permeability
functions. Let us start with

ε(x) = ε0e
x2

, µ(x) = µ0e
−x2

.

Substituting in Eq. (2) leads to

H′′(x) − 2xH′(x) +
(

ω2

c2
− k2

)
H(x) = 0,
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where ε0µ0 = 1/c2.
By comparing the last equation with Eq. (3) one can write λ0(x)

and s0(x) functions, and calculate λm(x) and sm(x) using recurrence
relation (6) for several values of m as follows

λ0(x) = 2x

s0(x) =
(

ω2

c2
− k2

)

λ1(x) = 4x2 + 2 −
(

ω2

c2
− k2

)

s1(x) = −2x

(
ω2

c2
− k2

)

λ2(x) = 4x

[
2x2 + 3 −

(
ω2

c2
− k2

)]

s2(x) = −
(

ω2

c2
− k2

) [
4x2 + 4 −

(
ω2

c2
− k2

)]

. . . etc.

(13)

By combing these results it is straightforward to show that

λm(x)sm−1(x) − λm−1(x)sm(x) =
m+1∏
n=0

(
ω2

c2
−k2−2n

)
m = 0, 1, 2, . . .

Clearly the quantization condition (12) implies that ω2

c2
− k2 should be

a non-negative and even integer

ω2

c2
− k2 = 2n n = 0, 1, 2, . . . .

According to this condition, energy Eigenvalues are obtained as follows

k =

√
ω2

c2
− 2n, n = 0, 1, 2, . . . .

These results can be used to calculate the ratio sn(x)/λn(x) and
consequently for obtaining general solution via (11) as follows

n = 0,
s0

λ0
=

s1

λ1
= . . . = 0 ⇒ H0(x) = 1

n = 1,
s1

λ1
=

s2

λ2
= . . . = −1

x
⇒ H1(x) = 2x

n = 2,
s2

λ2
=

s3

λ3
= . . . = − 4x

2x2 − 1
⇒ H2(x) = 4x2 − 2

. . . etc.
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It can be easily shown that the general form of the solution is in the
following form

Hn(x) = (2x)n − n(n−1)
1!

(2x)n−2 +
n(n−1)(n−2)(n−3)

2!
(2x)n−4+. . . ,

which is known as Hermite polynomials.

Table 1. Some of exactly solvable permittivity ε(x), permeability
µ(x), their eigenvalues and functions.

a > 0, b > 0

N ε(x) µ(x) H(x) k

1 ε0e
x2

µ0e
−x2

Hn(x)
√(

ω
c

)2 − 2n

2 ε0 µ0x
2 e−ω2x2/2cHn(

√
ω/cx) (2n + 1)(ω

c
)

3
ω−2

×x2
ax − b

x(
√

4b+1−1)/2e−kx

×L
√

4b+1
n (2kx)

a
2n+1+

√
4b+1

4
ω−2

×√
x

1
4
× ( a√

x

− b
x
√

x
)

x
√

b+1/4−1/2e−kx2

×L

√
b+1/4

n (2kx2)

a
2(4n+2b+3)

5
ω−2

×x3/2
a
√

x − b√
x

x(
√

16b+1−1)/4e−kx

×L

√
4b+1/4

n (2kx)

a

2n+1+
√

4b+1/4

6 ε0

a
ε0

e−αx

− b
ε0

e−2αx

e(−kx+ ω
√

b
α

e−αx)

×L
2k/α
n (− 2ω

√
b

α
e−αx)

−α
2
×

[
ωa

α
√

b

+(2n + 1)]

7 ε0 − a
x2 + b

x

x�+1e−x/n

×L2�+1
n−�−1(ω

2ε0bx/n)

ω2ε0a = �(� + 1)

ω2ε0b

2n+1+
√

1+4ω2ε0a

8 k2/ω2

1−x2

1 − x2

− 1
1−x2 + a

k2

(1 − x2)k/2P
(k,k)
n (x)

√
a + 1/4

−(n + 1/2)

9 ε0

−µ0

× e−αx

(1−e−αx)2

e−kx(1 − e−αx)�/2

×P
(2k/α,�−1)
n (1 − 2e−αx)

� = 1 +
√

1 + 4(ω/cα)2

α
4
× [� − 1

−(2n + 1)]

10 ε0
µ0 × cosh−2

ω
√

ε0x

(1 − tgh2(ω
√

ε0x))b/2

×P
(b,b)
n (tgh(ω

√
ε0x))

b = k/ω
√

ε0

1
2
ω
√

ε0

×[
√

1 + 4µ0

−(2n + 1)]

3. RESULTS AND DISCUSSION

One can investigate the exact solutions of Eq. (2), as well as
corresponding eigenvalues for some permittivity and permeability
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functions using AIM approach. The results for some calculated
examples are given in Table 1.

It was shown that the AIM approach can be used to develop
analytical solution for a broad class of inhomogeneous slab waveguide.
The calculated results for some examples were illustrated in Table 1.
In this table inhomogeneous medium and modal characteristics were
demonstrated.

4. CONCLUSION

In this paper, analytical approach for modal analysis of the
inhomogeneous slab waveguide has been developed based on the AIM.
According to developed analytical method guided wave vector and
magnetic field distribution for some interesting examples were given
in Table 1. In general, the introduced technique can be extended to
wide class of the index of refractions.
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