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Abstract—A closed form analytic solution is introduced for arbitrary
Coupled Nonuniform Transmission Lines (CNTLs). First, the
differential equations of CNTLs are written as a suitable matrix
differential equation. Then, the matrix differential equation is solved to
obtain the chain parameter matrix of CNTLs. Afterward, the voltage
and current of lines are obtained at any point using the chain parameter
matrix. The validation of the introduced solution is studied, finally.

1. INTRODUCTION

Coupled Nonuniform Transmission Lines (CNTLs) are widely used
in microwave circuits [1, 2]. The differential equations describing
CNTLs have non-constant matrices, so except for a few special cases
no analytical solution exists for them. Several methods have been
introduced to analyze arbitrary CNTLs [3–11]. These methods can
be classified to two groups. In the methods of the first group, all of
the elements of the per-unit-length matrices of CNTLs must be vary
similarly [3–6], in contrary with the methods of the second group [7–11].
There are some methods to analyze CNTLs such as cascading many
short sections [7], finite difference [8], Taylor’s series expansion [9],
Fourier series expansion [10] and the equivalent sources method [11].
These methods are numerical and do not yield a closed form analytic
solution. Closed form analytic solution has been yielded only for a
few special types of CNTLs such as exponential one [9–Appendix]. In
this paper, a closed form analytic solution is introduced for arbitrary
CNTLs. First, the differential equations of CNTLs are written as
a suitable matrix differential equation. Then the matrix differential
equation is solved to obtain the chain parameter matrix of CNTLs.
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Finally, the validation of the introduced solution is studied using two
comprehensive examples.

2. THE EQUATIONS OF CNTLS

The equations related to CNTLs are reviewed in this section. It is
assumed that the principal propagation mode of the lines is TEM or
quasi-TEM. This assumption is valid when the widths in the cross
section are small enough compared to the wavelength. Figure 1 shows
typical CNTLs consisting of M lines with length d and with arbitrary
terminal loads ZS, m(ω) and ZL, m(ω), where m = 1, 2, . . . , M . The
differential equations describing lossy and dispersive CNTLs in the
frequency domain are given by

dV(z)
dz

= −Z(z)I(z) (1)

dI(z)
dz

= −Y(z)V(z) (2)

in which V and I are M × 1 voltage and current vectors, respectively.
Also we have

Z(z) = R(z) + jωL(z) (3)
Y(z) = G(z) + jωC(z) (4)

In (3)–(4), R, L, G and C are the per-unit-length matrices, whose
dimensions are M × M . It is known that the voltage and current of
any arbitrary point z can be related to the voltage and current of the

Figure 1. A typical CNTL consisting of M lines of length d and
terminated by arbitrary loads.
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point z = 0 by a chain parameter matrix as follows[
V(z)
I(z)

]
= Φ(z)

[
V(0)
I(0)

]
(5)

3. ANALYTIC SOLUTION OF CNTLS

In this section an approach is proposed to solve the differential
equations of CNTLs, analytically. The set of differential Equations (1)–
(2), can be written as the following matrix differential equation

d

dz
X(z) = −A(z)X(z) (6)

where

X(z) =
[
V(z) V(z)
I(z) I(z)

]
(7)

and

A(z) =
[

0 Z(z)
Y(z) 0

]
(8)

From the matrix algebra and using (6), we can write the following

dX(z)X−1(z) ∼= d (ln(X(z)) = −A(z)dz (9)

Integrating (9) gives us the following

ln(X(z)) − ln(X(0)) ∼= ln
(
X(z)X−1(0)

)
= −

z∫
0

A(z′)dz′ (10)

Therefore, one can determine the following solution for the unknown
matrix in (6)

X(z) = exp


−

z∫
0

A(z′)dz′


X(0) = Φ(z)X(0) (11)

The approximations used in (9) and (10) are dependent to the matrix
A(z) and its integral. From (5), (7) and (11), the following closed form
analytic solution is obtained as the chain parameter matrix of CNTLs.

Φ(z) = exp


−

z∫
0

A(z′)dz′


= exp


−




0
z∫
0

Z(z′)dz′

z∫
0

Y(z′)dz′ 0




 (12)
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The voltage and current at any point z can be obtained after finding
those at two terminals using the chain parameter matrix of the point
z = d and the terminal conditions.

The solution (12) is a generalized formula of the known solution for
uniform coupled transmission lines [7], indeed. Moreover, the proposed
approach to solve the matrix differential Equation (6) is inspired of the
approach that is usually used to solve the ordinary scalar differential
equations, indeed.

4. EXAMPLES AND RESULTS

In this section, the introduced closed form solution is validated using
two comprehensive examples. Firstly, consider a lossless microstrip
CNTL with M = 2 strips, whose substrate is the air. This
homogeneous structure has the following per-unit-length matrices.

L(z) = L0 exp(kz/d) (13)
C(z) = C0 exp(kz/d) (14)
R(z) = G(z) = 0 (15)

Now, assume that k = 2, d = 10 cm, f = 1.0 GHz, ZS, 1 = ZS, 2 = 50 Ω,
ZL, 1 = ZL, 2 = 100 Ω, VS, 1 = 1 V, VS, 2 = 0 and also

C0 =
[

65.7 −7.15
−7.15 65.7

]
pF/m (16)

L0 =
1
c2

C−1
0 =

[
171.1 18.62
18.62 171.1

]
nH/m (17)

in which c is the velocity of the light. The matrix A(z) of this CNTL
will be as follows

A(z) =
[

0 jωL0 exp(kz/d)
jωC0 exp(kz/d) 0

]
(18)

Therefore, the chain parameter matrix of this CNTL will be given by

Φ(z)=exp
(
−jω

d

k

[
0 L0 (exp(kz/d) − 1)

C0 (exp(kz/d)−1) 0

])
(19)

Figures 2–3 compare the amplitude and phase of the lines voltages,
obtained from the introduced solution with the exact one [7]. One
sees that the introduced solution has perfectly given exact results.
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Figure 2. The amplitude of the voltage for CNTL having the same
variations k = 2 for L and C at f = 1 GHz.

Figure 3. The phase of the voltage for CNTL having the same
variations k = 2 for L and C at f = 1 GHz.
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Secondly, consider the above CNTL but its capacitance matrix is
considered as follows instead of (14)

C(z) = C0 exp(−kz/d) (20)

Now, the matrix A(z) of this CNTL will be as follows

A(z) =
[

0 jωL0 exp(kz/d)
jωC0 exp(−kz/d) 0

]
(21)

Therefore, the chain parameter matrix of this CNTL will be given by

Φ(z)=exp
(
−jω

d

k

[
0 L0(exp(kz/d) − 1)

C0 (1−exp(−kz/d)) 0

])
(22)

Figures 4–5 compare the amplitude and phase of the lines voltages,
considering k = 0.1, obtained from the introduced solution with the
exact one [9–Appendix]. One sees that the introduced solution has not
perfectly given exact results but it has a good agreement with exact
solution. Also, Figure 6 illustrates the relative error corresponding to
the lines voltages versus frequency, considering k = 0.1 and 0.2. It is
seen that as k decreases, the accuracy of the solutions increases. Also,
the better accuracy is existed at very low frequencies. It is worth to

Figure 4. The amplitude of the voltage for CNTL having different
variations k = ±0.1 at f = 1 GHz.
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Figure 5. The phase of the voltage for CNTL having different
variations k = ±0.1 at f = 1 GHz.

Figure 6. The relative error corresponding to the far-end voltages
with respect to frequency.

mention that the determinant of the chain parameter matrices obtained
in the above examples were exactly equal to one at all frequencies.
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According to the above examples, one may be conclude the
following results:

1. The introduced solution gives exact results at all frequencies for
arbitrary CNTLs, whose the per-unit-length matrices have the
same variations.

2. The accuracy of the introduced solution is acceptable for arbitrary
CNTLs especially at very low frequencies.

3. The accuracy of the introduced solution is increased as the
variations of the per-unit-length matrices (k/d in the examples)
are decreased.

From mathematics point of view and according to the results 2 and
3 and also paying attention to the matrices existed in the exponential
functions of (19) and (22), we can conclude that the accuracy of
the introduced solution is increased in the case of the anti-diagonal
elements of the integral of the matrix A(z) tend to zero (as in low
frequencies) or have the same variations.

5. CONCLUSION

A closed form analytic solution was introduced for arbitrary Coupled
Nonuniform Transmission Lines (CNTLs). First, the differential
equations of CNTLs are written as a suitable matrix differential
equation. Then the matrix differential equation is solved to obtain the
chain parameter matrix of CNTLs. The validation of the introduced
solution was studied using a comprehensive example. It was seen
that the introduced solution gives exact results at all frequencies for
CNTLs, whose the per-unit-length matrices have the same variations.
Also, the accuracy of the introduced solution is acceptable for arbitrary
CNTLs especially at very low frequencies. Moreover, the accuracy of
the introduced solution is increased as the variations of the per-unit-
length matrices are decreased.
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