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Abstract—The problem of electromagnetic scattering by 3D dielectric
bodies is formulated in terms of a weak-form volume integral equation.
Applying Galerkin’s method with rooftop functions as basis and
testing functions, the integral equation can be usually solved by
Krylov-subspace fast Fourier transform (FFT) iterative methods.
In this paper, the generalized minimum residual (GMRES)-FFT
method is used to solve this integral equation, and several adaptive
acceleration techniques are proposed to improve the convergence rate
of the GMRES-FFT method. On several electromagnetic scattering
problems, the performance of these adaptively accelerated GMRES-
FFT methods are thoroughly analyzed and compared.

1. INTRODUCTION

The scattering of electromagnetic waves by objects of arbitrary shape is
an important research subject. Pioneering works treating 3D arbitrary
dielectric bodies are mainly based on the method of moment (MoM) [1].
MoM for this problem involves discretizing the vector volume integral
equation and then solving a matrix equation with N unknowns. It
is basically impractical to solve this matrix equation with a large
number of unknowns using a direct solver lver because it requires
O(N3) CPU time and O(N2) computer memory. Alternatively, one can
solve this matrix equation by using Krylov-subspace iterative methods,
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which requires a reduced CPU time of O(N2) and the same computer
memory.

An important improvement over the above MoM is the k-space
method [2] proposed by Bojaski in the early 1980s. The k-space
method uses the Krylov-subspace iterative method to solve the integral
equation, and the required matrix-vector product in the iteration
is efficiently evaluated by using the fast Fourier transform (FFT)
technique. A large number of related papers have been reported by
many researchers, which can be found in [3–8]. Among these schemes,
the conjugate gradient (CG)-FFT method developed by Zwamborn
and van den Berg in the 1990s leads to a weaker singularity in the
dyadic Green’s function and appears to be simpler to implement [3].
Recently, Liu’s group developed a fast weak-form biconjugate gradient
(BCG)-FFT method [4], which shows promising results because of a
faster convergence speed than the conventional weak-form CG-FFT
method. They further improved the convergence speed by using the
weak-form discretization with the stabilized BCG (BCGS) method,
which is referred to as BCGS-FFT method [5]. The combination of
the Krylov-subspace iterative methods with the FFT technique reduces
the CPU time to O(N log N) and computer memory to O(N).

The generalized minimum residual (GMRES) method is also
a kind of well-known Krylov-subspace iterative methods. Its
combination with FFT technique results in the so-called GMRES-
FFT method [6]. The superiority of GMRES method over other
Krylov-subspace methods lies in that it only needs directly matrix-
vector product operation in the iteration process and it has the
property of monotonic convergence. However, the potential superlinear
convergence behavior is usually inhibited since some useful historical
information is believed to be lost due to restarting [9]. A few
approximate eigenvectors of the coefficient matrix corresponding to
the smallest eigenvalues in magnitude have been saved and used
to augment the Krylov-subspace in order to mitigate this ill effect
of restarting. The convergence speed of this weak-form augmented
GMRES (AGMRES)-FFT [7] method is comparable to the BCG-
FFT method, while the drawback of BCG-FFT is avoided. The
approximate eigenvectors can also be incorporated into the Krylov-
subspace by the implicit restarting scheme. The resulted GMRES with
implicit restarting (GMRES-IR)-FFT method dramatically improves
the convergence speed of the regular GMRES-FFT method [8].

In this paper, the GMRES-FFT method is employed to solve
the weak-form volume integral equation resulting from 3D dielectric
scattering problems. We focus on discussing adaptive acceleration
strategies related to GMRES to enhance the performance of the
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GMRES-FFT method. The outline of the paper is as follows: In
Section 2, the weak-form volume integral equation for 3D dielectric
scattering problems is briefly introduced. In Section 3, several
acceleration techniques for GMRES are described in more details, and
their theoretical properties and computational costs are analyzed and
compared. Numerical performance of these accelerated GMRSE-FFT
methods on several electromagnetic problems is discussed in Section 4.
Finally, Section 5 provides some conclusions and comments.

2. THE VOLUME INTEGRAL EQUATION

Consider the scattering of an inhomogeneous dielectric object
embedded within a finite volume V . The complex permittivity of the
object is

ε(r) = εr(r)ε0 − j
σ(r)
ω

(1)

where εr and σ denote the relative permittivity and the electric
conductivity, respectively. Suppose the object is illuminated by an
incident electric field Ei. The volume integral equation for this problem
can then be described by

D(r)
ε(r)

− (k2
0 + ∇∇·)A(r) = Ei(r), r ∈ V (2)

with k0 = ω
√

µ0ε0 and

A(r) =
1
ε0

∫
V

G(r − r′)χ(r′)D(r′)dr′ (3)

where χ(r) = ε(r)−ε0

ε(r) and G(r − r′) = exp(−jk0|r−r′|)
4π|r−r′| .

Using the weak form of the electric flux density, the electric-
contrast vector potential and the incident electric field in (2) and
expanding and testing the corresponding terms with 3D vector
volumetric rooftop functions, a matrix equation can be obtained as
the following:

Ax = b (4)
This matrix equation can be solved efficiently by Krylov-subspace
iterative methods combined with FFT technique.

In this paper, we assume that the dielectric bodies are illuminated
by a x-polarized normally incident plane wave and the operating
frequency is taken to be 100 MHz. The bistatic radar cross section
(RCS) defined as follows:

RCS = 10 log(σ/λ2
0)
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in which

σ(φ, θ) = lim
R→∞

4πR2 ‖Es(φ, θ)‖2

‖Ei(φ, θ)‖2

Here, Es(φ, θ) and Ei(φ, θ) denote the scattered far field and incident
far-field vectors, respectively and R denotes the distance between the
source point and the observed point, ‖.‖ denotes the L2-norm of an
arbitrary vector.

3. ACCELERATION TECHNIQUES FOR GMRES

The GMRES method [9] is a popular Krylov-subspace iterative method
for the solution of algebraic linear systems. In its original form, so-
called full GMRES, it is optimal in the sense that it minimizes the
residual over the whole Krylov-subspace. However, it is often too
expensive since the required orthogonalization per iteration step grows
quadratically with the number of iterations. Therefore, in practice one
often uses restarted version of GMRES (GMRES (m)). In restarted
GMRES method, the method is restarted once the Krylov-subspace
reaches dimension m, and the current approximate solution becomes
the new initial guess for the next m iterations. A disadvantage of this
approach is that the convergence behavior in many situations seems
to depend quite critically on the value of m. Even in situations in
which satisfactory convergence takes place, the convergence is less than
optimal, since the history is thrown away so that potential superlinear
convergence behavior is inhibited [10]. There are many acceleration
techniques that attempt to mimic the convergence of full GMRES
more closely, or to accelerate the convergence of the regular GMRES
by retaining some historical information at the time of restart [11–15].

Deflation methods are a main class of acceleration techniques for
GMRES. It is well known that the convergence of Krylov-subspace
methods depends to a large degree on the distribution of eigenvalues,
and if there are small eigenvalues, then removing or deflating them
can greatly improve the convergence. One way that eigenvalues can be
deflated is for the corresponding eigenvectors to be in the subspace
as in [7, 11], where approximate eigenvectors corresponding to the
smallest eigenvalues in magnitude are saved and then added to the
Krylov-subspace in the next cycle of GMRES.

A different approach for deflation is given in GMRES with implicit
restarting (GMRES-IR) method [8, 12]. By using the unwanted
eigenvalues as shifts for the QR iteration, it effectively restarts
the GMRES with several approximate eigenvectors. However, the
GMRES-IR is somewhat complicated and has stability problems
associated with the implicit restarting scheme. Method proposed
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in [13], called GMRES with deflated restarting (GMRES-DR), uses
a kind of thick restarting approach. It is mathematically equivalent to
the implicit restarting. However, its implementation is simpler and it
does not have the same numerical concerns.

In another approach to deflated GMRES, Kharchenko builds a
spectral preconditioner for the matrix using approximate eigenvec-
tors [14]. This spectral preconditioning technique uses approximate
eigenvectors generated during only one GMRES cycle. It is improved
in [15] with a method, called deflated GMRES (DGMRES) in this pa-
per, that keeps working on the approximate eigenvectors outside of
GMRES. DGMRES combines its previous approximate eigenvectors
with new ones from each cycle of GMRES.

In analog to augmented GMRES (AGMRES) method proposed
in [11], which augments the Krylov-subspace with approximate
eigenvectors, Baker [16] observes that the residual vectors at the
end of each cycle of GMRES often alternate direction in a cyclic
fashion. This alternating phenomenon is simply a symptom of the lack
of orthogonality between the approximate Krylov-subspace generated
during the current restart cycle of GMRES and the approximate
Krylov-subspaces from previous cycles. This fact indicates that faster
convergence should be possible if some degree of orthogonality to
previous approximate Krylov-subspaces were maintained. To achieve
this goal, approximations to residual errors from previous restart cycles
of GMRES are added to the current Krylov-subspace. The resulted
method is called loose GMRES method (LGMRES) [16].

Another class of acceleration techniques is based on the fact
that ideally the approximation Krylov-subspace should contain the
correction component c such that x = x0+c is the exact solution to the
problem (4). The nested Krylov-subspace method GMRES recursive
(GMRESR) method [17] is one such technique. In GMRESR, the
outer generalized conjugate residual (GCR) method invokes another
GMRES method at each step i to approximate the solution to Ac = ri,
where ri is the current residual at step i. The approximate solution
to Ac = ri then becomes the next direction for the outer approximate
space. Note that flexible GMRES (FGMRES) method [18] can also
be view as a method that approximates solutions to similar residual
equations at each step. Different from GMRESR method, the inner
and outer iterative methods in FGMRES are both GMRES.

We now briefly look at the costs and storage requirements of these
accelerated GMRES methods compared to regular GMRES method.
Since the Krylov-subspace dimension m is usually far less than the
number of unknowns N , only the major costs and storage for vectors of
length of N are considered. The main potential advantage of GMRES-
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DR and GMRES-IR compared to regular is in the convergence, and
both of them also does need only m-k matrix-vector products (MVPs)
per cycle while GMRES uses m, where k denotes the number of
approximate eigenvectors used. Moreover, both of them can be
implemented with about the same storage as GMRES. AGMRS and
LGMRES are a litter higher in both expense and storage than GMRES.
About k extra vectors of length N are normally used for AGMRES
and LGMRES. For FGMRES and GMRESR, the costs and storage
requirements almost doubles since another inner GMRES iterative
method is invoked. For more details, Table 1 gives a rough count
of the number of MVPs and storage of length N for one cycle of
the standard restarted GMRES and the accelerated GMRES methods
described above.

Table 1. The number of MVPs and storage of length N for one cycle
of the regular restarted GMRES method and the accelerated GMRES
methods.

Methods GMRES AGMRES LGMRES GMRES-DR

MVPs m m + k m + k m

Memory m + 3 m + 3k + 3 m + 3k + 3 m + 3

Methods GMRES-IR DGMRES FGMRES GMRESR

MVPs m m 2m 2m

Memory m + 3 m + 2k + 3 2m + m + 6 2m + m + 5

4. NUMERICAL RESULTS AND DISCUSSIONS

The accelerated GMRES methods described in the above section can
be easily combined with the FFT technique, resulting the so-call
accelerated GMRES-FFT methods. In this section, these accelerated
GMRES methods assumed to be combined with the FFT technique
for solving linear systems arising from the discretization of the weak-
form volume integral equation of electromagnetic wave scattering
problems. A number of numerical results are presented to illustrate
the performance of these acceleration techniques. Since the regular
restarted GMRES method has been shown to be more efficient than a
class of traditional Krylov-subspace methods, such as CG, BCG etc.,
we mainly compare the performance of the GMRES method and the
proposed accelerated GMRES methods.

To demonstrate the performance of these acceleration techniques
for GMRES, we re-compute the RCS of four typical dielectric
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geometries, which can be found in reference [8]. They consist of a
homogeneous sphere with 98304 unknowns, a two-layer inhomogeneous
sphere with 786432 unknowns, a cube with 98304 unknowns, and an
oblate spheroid 24576 unknowns. All computations were carried out
on a Pentium(R) 4 with 2.4 G CPU and 1 GB RAM in single precision.
The numerical convergence is measured by the relative residual error
‖current residual‖/‖initial residual‖. The maximum iteration number
is set to be 2000 and the iteration process is terminated when the
residual error falls below 10−3. In all cases, a zero initial estimate
is taken and the parameter m = 30 is chosen as the default setting.
The parameter k (denotes the number of approximate eigenvectors)
for AGMRES, LGMRES GMRES-DR, GMRES-IR, and DGMRES
are specifically tuned in each example for optimal performance. The
Krylov-subspace dimension and tolerance for inner GMRES method of
both FGMRES and GMRESR are chosen as 30 and 0.01, respectively.

Figures 1–4 displays the convergence history of the accelerated
GMRES methods and the regular GMRES method on the four
examples. It demonstrates that all accelerated GMRES methods
converge much faster than the regular restarted GMRES method on
all examples. This justifies the use of acceleration techniques for
GMRES method. More detailed comparisons can be found in Table 2,
in which the solution cost of the accelerated GMRES methods and the
regular GMRES method is evaluated in terms of number of matrix-
vector products and CPU time, where ∗ refers to no convergence after
maximum 2000 iterations and ‘s’ denotes second.

It can also be found that AGMRES GMRES-DR, GMRES-

Table 2. Comparison of the solution cost for the regular GMRES
method with the accelerated GMRES methods.

Sphere 
Two-layer 

Sphere
Cube Spheroid 

Examples 
MVPs Time(s) MVPs Time(s) MVPs Time(s) MVPs Time(s)

GMRES 137 100.3 1242 884.0 1166 807.8 

AGMRES 71 52.4 137 101.6 114 86.0 161 15.0 

LGMRES 91 68.7 200 151.4 275 212.1 448 42.0 

GMRES-DR 63 43.5 125 84.8 112 77.2 136 12.0 

GMRES-IR 63 57.2 109 99.3 112 105.9 148 19.8 

DGMRES 64 44.0 127 90.8 126 91.5 159 13.5 

FGMRES 108 74.2 263 180.1 331 231.4 303 23.9 

GMRESR 108 73.2 232 157.9 300 207.5 303 23.8 

* *
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Figure 1. The convergence history of the regular GMRES method and
the accelerated GMRES methods on the homogeneous sphere example.
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Figure 2. The convergence history of the regular GMRES method
and the accelerated GMRES methods on the inhomogeneous two-layer
sphere example.

DR and DGMRES methods can converge much faster than other
accelerated GMRES methods. This demonstrates the efficiency of
the kind of deflation technique for GMRES method when solving
electromagnetic scattering problems. Moreover, these four accelerated
GMRES methods exhibit similar convergence curve. This is because
they belong to the same class of acceleration techniques although they
use approximate eigenvectors to deflated eigenvalues in different ways.
At the same time, since the eigenvector information is incorporated in
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the Krylov-subspace from the beginning instead of being appended at
the end of the cycle as done in AGMRES, GMRES-DR and GMRES-
IR obtain a faster convergence rate than AGMRES. Since GMRES-DR
and GMRES-IR methods are mathematically equivalent to each other,
they almost give the same convergence curve.
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Figure 3. The convergence history of the regular GMRES method
and the accelerated GMRES methods on the cube example.
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Figure 4. The convergence history of the regular GMRES method
and the accelerated GMRES methods on the oblate spheroid example.

Instead of deflating smallest eigenvalues by use of approximate
eigenvectors as AGMRES, LGMRES augments the Krylov-subspace
with approximations to the residual errors at each end of cycle, in order
to maintain the orthogonality between previous Krylov-subspaces.
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Although the convergence speed of LGMRES method is much slower
than that of AGMRES as shown in Figs. 1–4, its implementation is
more simpler and the approximations to the residual errors can be
easily obtained from the GMES method without any additional cost.

As shown in Figs. 1–4, FGMRES and GMRESR methods can
decrease dramatically the number of outer iterations of GMRES and
GCR, respectively, by use of another GMRES method as an inner
iterative method. However, the introduction of the inner GMRES
method also consumes much computational costs. And the overall
convergence improvement depends on the balance of the acceleration
effect and the added computational cost [19–28].

5. CONCLUSIONS

In this paper, the kind of GMRES-FFT method is proposed for the
iterative solution of 3-D volume electric field integral equation of 3-D
dielectric electromagnetic scattering problems. In order to improve the
convergence of GMRES-FFT method, several acceleration techniques
are overviewed and compared. Numerical results demonstrate
that these acceleration techniques can significantly speed up the
convergence rate of GMRES-FFT method. Among these acceleration
techniques, both GMRES-DR and GMRES-IR methods are the most
efficient and robust when 3-D dielectric electromagnetic scattering
problems are considered.
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