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Abstract—A fast and accurate near-field — far-field transformation
technique with helicoidal scanning is proposed in this paper. It is
tailored for elongated antennas, since a prolate ellipsoid instead of a
sphere is considered as surface enclosing the antenna under test. Such
an ellipsoidal modelling allows one to consider measurement cylinders
with a diameter smaller than the antenna height, thus reducing the
error related to the truncation of the scanning surface. Moreover, it
is quite general, containing the spherical modelling as particular case,
and allows a significant reduction of the number of the required near-
field data when dealing with elongated antennas. Numerical tests are
reported for demonstrating the accuracy of the far-field reconstruction
process and its stability with respect to random errors affecting the
data.

1. INTRODUCTION

The time needed for collecting the near-field data can be remarkably
reduced by means of continuous movements of the positioning systems
of the probe and antenna under test (AUT), as suggested by Rahmat-
Samii et al. in [1]. By following this suggestion, innovative near-field
— far-field (NF-FF) transformation techniques from a nonredundant
number of data acquired along spirals wrapping the conventional
scanning surfaces have been recently developed [2–7]. In particular,
a NF-FF transformation with helicoidal scanning (Fig. 1) has been
proposed in [2, 3], a planar spiral arrangement of samples has been
considered in [4], and a NF-FF transformation with spherical spiral
scanning has been developed in [5, 6].
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Figure 1. Helicoidal scanning.

In all the cases, efficient two-dimensional interpolation formulas
for recovering the NF data required by the NF-FF transformations
employing the conventional scannings [8] have been obtained by
applying the theoretical results on the nonredundant sampling
representations of electromagnetic (EM) fields [9] and assuming the
AUT enclosed in a ball of radius a. This target has been achieved: a)
by developing a nonredundant sampling representation of the voltage
on the considered curve (helix or spiral); b) by choosing the step of such
a curve equal to the sample spacing required to interpolate the data
along the corresponding meridian curve (generatrix, radial line, and
meridian). Moreover, a unified theory of the spiral scannings has been
provided in [7]. In fact, it has been proved that the voltage acquired
by a nondirective probe can be reconstructed on a quite arbitrary
rotational surface from a nonredundant number of its samples lying
on a proper spiral wrapping it. This surface is obtained by rotating
a meridian curve always external to the cone tangent to the sphere
modelling the AUT and having the vertex at the observation point.
The proof has been attained by revisiting the approach in [9] to obtain
the optimal phase function to extract from the voltage expression and
the parameter to be used for describing the scanning curve. It is
worth noting that the voltage can be determined by using the same
interpolation scheme, even if the spiral lies on geometrically different
surfaces.
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However, the use of the spherical AUT modelling prevents the
possibility of considering measurement cylinders (planes) with a radius
(distance) smaller than one half the source maximum size. This
drawback occurs in the helicoidal and in the planar spiral scannings
when considering elongated and quasi-planar antennas, respectively.
Obviously, this reflects in an increase of the error related to the
truncation of the scanning surface. In fact, for a given size of the
scan zone, such an error raises on increasing the distance. Moreover,
the volumetric redundancy of the spherical modelling gives rise to
an increase in the number of the NF data, when the AUT geometry
departs from the spherical one.

The aim of this paper is to develop an efficient NF-
FF transformation technique with helicoidal scanning tailored for
elongated antennas, which allows to overcome the abovementioned
drawbacks. To this end, the AUT is considered as enclosed in a prolate
spheroid (Fig. 1), a shape particularly suitable to deal with such a kind
of antennas, but which remains quite general and contains the spherical
modelling as particular case.

2. THE SPHERICAL MODELLING OF THE ANTENNA

Let us consider a non directive probe which scans a helix with constant
angular step lying on a cylinder of radius d surrounding the AUT
(see Fig. 1) and adopt the spherical coordinate system (r, ϑ, ϕ) for
denoting the observation point P in the NF region. Since the voltage
V measured by this kind of probe has the same effective spatial
bandwidth of the field, the theoretical results on the nonredundant
representation of EM fields [9] can be applied to such a voltage.
Accordingly, if the AUT is enclosed in a sphere of radius a (AUT
ball) and the helix is described by a proper analytical parameterization
r = r(ξ), the probe “reduced voltage”

Ṽ (ξ) = V (ξ)ejγ(ξ) (1)

can be closely approximated by a spatially bandlimited function, γ(ξ)
being a phase function to be determined. The related bandlimitation
error becomes negligible as the bandwidth exceeds a critical value
Wξ [9], so that it can be effectively controlled by choosing a bandwidth
equal to χ′Wξ, wherein the excess bandwidth factor χ′ is slightly
greater than unity for an electrically large AUT.

To obtain a sampling representation of the voltage on the cylinder
from its nonredundant samples collected along a helix with constant
angular step, it is necessary: a) to develop a nonredundant voltage
representation on the helix; b) to choose the helix step equal to the
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sample spacing needed to interpolate the voltage along a cylinder
generatrix.

The parametric equations of the helix, when imposing its passage
through a fixed point Q0 of the generatrix at ϕ = 0, are: x =
d cos(φ − φi), y = d sin(φ − φi), z = d cot θ, where φ is the angular
parameter describing the helix, φi is the value of φ at Q0, and θ = kφ.
The parameter k is such that the angular step, determined by the
consecutive intersections Q(φ) and Q(φ + 2π) with a generatrix, is
∆θ = 2πk. It is worth noting that the helix can be obtained by radially
projecting on the measurement cylinder the spiral wrapping the AUT
ball with the same angular step.

As shown in [7], a nonredundant sampling representation of the
voltage on the helix can be obtained by using the following expressions
for the optimal phase function and parameterization:

γ = β

∫ r

0

√
1 − a2/r′2dr′ = β

√
r2 − a2 − βa cos−1

(a
r

)
(2)

ξ =
βa

Wξ

∫ φ

0

√
k2 + sin2 kφ′dφ′ (3)

where β is the wavenumber.
Since the elevation step of the helix must be equal to the

sample spacing required for the interpolation along a generatrix, then,
according to [9], ∆θ = ∆ϑ = 2π/(2N ′′ + 1), with N ′′ = Int(χN ′) + 1
and N ′ = Int(χ′βa) + 1, χ > 1 being an oversampling factor. As a
consequence, k = 1/(2N ′′ + 1).

According to (3), ξ is proportional to the curvilinear abscissa along
the spiral wrapping the sphere modelling the source. Since such a spiral
is a closed curve, it is convenient to choose the bandwidth Wξ such that
ξ covers a 2π range when the whole curve on the sphere is described.
As a consequence,

Wξ =
βa

π

(2N ′′+1)π∫
0

√
k2 + sin2 kφ′dφ′ (4)

According to these results, the optimal sampling interpolation (OSI)
formula of central type to reconstruct the voltage at any point Q of
the helix is [7, 9]:

Ṽ (ξ) =
m0+p∑

m=m0−p+1

Ṽ (ξm) ΩM (ξ − ξm)DM ′′ (ξ − ξm) (5)
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where m0 = Int[(ξ − ξ(φi))/∆ξ] is the index of the sample nearest (on
the left) to the output point, 2p is the number of retained samples
Ṽ (ξm), and

ξm = ξ(φi) +m∆ξ = ξ(φi) + 2πm/
(
2M ′′ + 1

)
(6)

with M ′′ = Int(χM ′) + 1 and M ′ = Int(χ′Wξ) + 1. Moreover,

DM ′′(ξ) =
sin ((2M ′′ + 1) ξ/2)
(2M ′′ + 1) sin(ξ/2)

;

ΩM (ξ) =
TM

[
−1 + 2

(
cos(ξ/2)/ cos

(
ξ̄/2

))2
]

TM [−1 + 2/ cos2
(
ξ̄/2

)
]

(7)

are the Dirichlet and Tschebyscheff Sampling functions, wherein TM (ξ)
is the Tschebyscheff polynomial of degree M = M ′′−M ′ and ξ̄ = p∆ξ.

The OSI formula (5) can be used to evaluate the “intermediate
samples”, namely, the voltage values at the intersection points between
the helix and the generatrix passing through P . Once these samples
have been evaluated, the voltage at P can be reconstructed via the
following OSI expansion:

Ṽ (ϑ, ϕ) =
n0+q∑

n=n0−q+1

Ṽ (ϑn) ΩN (ϑ− ϑn)DN ′′ (ϑ− ϑn) (8)

where N = N ′′ −N ′, n0 = Int[(ϑ − ϑ0)/∆ϑ], 2q is the number of the
retained intermediate samples Ṽ (ϑn), and

ϑn = ϑn(ϕ) = ϑ (φi) + kϕ+ n∆ϑ = ϑ0 + n∆ϑ (9)

The described two-dimensional OSI algorithm can be properly
applied to recover the NF data required by the NF–FF transformation
technique [10].

3. THE PROLATE ELLIPSOIDAL MODELLING OF THE
ANTENNA

As already stated, the use of the spherical modelling of the AUT does
not allow to consider scanning cylinder having diameter less than the
antenna maximum size. This is a serious drawback when dealing with
elongated antennas. In fact, for a given height of the measurement
cylinder, the error related to the truncation of the scanning zone raises
on increasing the radius of the cylinder. Moreover, the volumetric
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redundancy of the spherical modelling gives rise to a useless increase
in the number of NF data, when the AUT geometry departs from the
spherical one. To overcome these drawbacks, the previously described
sampling representation will be properly extended in this Section to
the case of elongated antennas.
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Figure 2. Ellipsoidal source modelling.

An effective modelling for this kind of antennas is obtained by
considering them as enclosed in the smallest prolate ellipsoid having
major and minor semi-axes equal to a and b (see Fig. 2). In such a
case, by adopting Wη = β#′/2π (#′ being the length of the intersection
curve C ′ between the meridian plane through P and the ellipsoid), the
optimal expressions for the phase function ψ and the parameterization
η to be used for describing a cylinder generatrix become [9]:

ψ = βa

[
v

√
(v2 − 1)
(v2 − ε2)

− E

(
cos−1

√
(1 − ε2)
(v2 − ε2)

|ε2
)]

(10)

η = (π/2)
[
1 + E

(
sin−1 u|ε2

)
/E

(
π/2|ε2

)]
(11)

where u = (r1−r2)/2f and v = (r1+r2)/2a are the elliptic coordinates,
r1,2 being the distances from P to the foci and 2f the focal distance of
C ′. Moreover, ε = f/a is the eccentricity of C ′, and E(·|·) denotes the
elliptic integral of second kind. It is worth noting that in any meridian
plane the curves ψ = const and η = const are ellipses and hyperbolas
confocal to C ′ (Fig. 2), instead of circumferences and radial lines.

According to a heuristic reasoning, the helix can be again obtained
by projecting a spiral wrapping the ellipsoid modelling the AUT on
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the scanning cylinder. The elevation step of such a spiral is equal
to the sample spacing ∆η needed for the voltage interpolation along a
generatrix. The projection is now obtained by means of the hyperbolas
at η = const, that in the case of spheroidal source modelling take the
role of the radial lines of the spherical one. Accordingly, the parametric
equations of the helix become:{

x = d cos (φ− φi)
y = d sin (φ− φi)
z = d cot[θ(η)]

(12)

wherein η = kφ = φ/ (2N ′′ + 1).
A quite analogous reasoning allows one to determine the phase

function and the parameterization to be used for obtaining a
nonredundant sampling representation along the helix. In particular,
by generalizing relations (2) and (3), the phase function γ coincides
with ψ defined in (10) and the parameter ξ is β/Wξ times the
curvilinear abscissa of the projecting point that lies on the spiral
wrapping the ellipsoid. Moreover, according to (4), Wξ is chosen to
be equal to β/π times the length of the spiral wrapping the ellipsoid
from pole to pole. As a conclusion, the spiral, γ and ξ are such that
they coincide with those relevant to the spherical modelling when the
prolate ellipsoid approaches to a sphere.

It is worthy to note that the OSI formula (5) can be still
used to reconstruct the reduced voltage at any point on the helix
and, as a consequence, can be applied to recover the intermediate
samples, whereas the NF data required to carry out the NF-FF
transformation [10] can be reconstructed by means of the following
OSI expansion:

Ṽ (η(ϑ), ϕ) =
n0+q∑

n=n0−q+1

Ṽ (ηn) ΩN (η − ηn)DN ′′ (η − ηn) (13)

wherein N = N ′′ −N ′, N ′ = Int(χ′Wη) + 1, n0 = Int[(η − η0)/∆η], 2q
is the number of the retained intermediate samples Ṽ (ηn), and

ηn = ηn(ϕ) = η (φi) + kϕ+ n∆η = η0 + n∆η (14)

4. NF-FF TRANSFORMATION

For reader’s convenience, the key steps of the standard probe
compensated NF-FF transformation technique with cylindrical
scanning [10] are reported. According to such a technique, the modal
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coefficients aν and bν of the cylindrical wave expansion of the field
radiated by the AUT are related to: i) the two-dimensional Fourier
transforms Iν and I ′ν of the output voltage of the probe for two
independent sets of measurements (the probe is rotated 90◦ about its
longitudinal axis in the second set); ii) the coefficients cm, dm and
c′m, d′m of the cylindrical wave expansion of the field radiated by the
probe and the rotated probe, respectively, when used as transmitting
antennas. The key relations are:

aν(α) =
β2

Λ2∆ν(α)

[
Iν(α)

∞∑
m=−∞

d′m(−α)H(2)
ν+m(Λd)

−I ′ν(α)
∞∑

m=−∞
dm(−α)H(2)

ν+m(Λd)

]
(15)

bν(α) =
β2

Λ2∆ν(α)

[
I ′ν(α)

∞∑
m=−∞

cm(−α)H(2)
ν+m(Λd)

−Iν(α)
∞∑

m=−∞
c′m(−α)H(2)

ν+m(Λd)

]
(16)

Iν(α) =

∞∫
−∞

π∫
−π

V (ϕ, z)e−jνϕejαzdϕdz;

I ′ν(α) =

∞∫
−∞

π∫
−π

V ′(ϕ, z)e−jνϕejαzdϕdz

(17)

∆ν(α) =
∞∑

m=−∞
cm(−α)H(2)

ν+m(Λd)
∞∑

m=−∞
d′m(−α)H(2)

ν+m(Λd)

−
∞∑

m=−∞
c′m(−α)H(2)

ν+m(Λd)
∞∑

m=−∞
dm(−α)H(2)

ν+m(Λd) (18)

where Λ =
√
β2 − α2, H(2)

ν (·) is the Hankel function of second kind
and order ν, and V , V ′ represent the output voltage of the probe and
the rotated probe at the point (d, ϕ, z).

Once the modal coefficients have been determined, the FF
components of the electric field in the spherical coordinate system
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(R,Θ,Φ) can be evaluated by:

EΘ(R,Θ,Φ) = −j2β e
−jβR

R
sin Θ

∞∑
ν=−∞

jνbν(β cos Θ)ejνΦ (19)

EΦ(R,Θ,Φ) = −2β
e−jβR

R
sin Θ

∞∑
ν=−∞

jνaν(β cos Θ)ejνΦ (20)

5. NUMERICAL TESTS

Some numerical tests assessing the effectiveness of the developed
technique are reported in the following. The first simulation refers to a
uniform planar array (Fig. 1) of elementary Huygens sources polarized
along the z axis. Its elements cover an elliptical zone in the plane
y = 0, with major and minor semi-axes equal to 30λ and 6λ, and are
spaced by 0.4λ along x and 0.6λ along z, λ being the wavelength. An
open-ended WR-90 rectangular waveguide, operating at the frequency
of 10 GHz, is chosen as probe. The NF data are collected on a helix
wrapping a cylinder with radius d = 12λ and height h = 180λ.
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Figures 3 and 4 show the reconstruction of the amplitude and
phase of the output voltage V on the generatrix at ϕ = 90◦. As can
be seen, there is an excellent agreement between the exact voltage and
the reconstructed one. The accuracy is also confirmed by the values
of the maximum and mean-square errors (normalized to the voltage
maximum value on the cylinder) reported in Figs. 5 and 6, respectively.
They have been obtained by comparing the interpolated values of V
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with those directly evaluated on a close grid in the central zone of the
cylinder, so that the existence of the guard samples is assured. As
expected, the errors decrease up to very low values on increasing the
oversampling factor and/or the number of the retained samples. The
algorithm stability has been investigated by adding random errors to
the exact samples. These errors simulate a background noise, bounded
to ∆a in amplitude and with arbitrary phase, and uncertainties on the
data of ±∆ar in amplitude and ±∆σ in phase. As shown in Fig. 7,
the interpolation algorithm works well also when dealing with error
affected data. The reconstructions of the antenna FF pattern in the
principal planes are shown in Figs. 8 and 9. As can be seen, the exact
and recovered fields are practically indistinguishable, thus assessing
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the effectiveness of the developed NF–FF transformation technique.
Note that the number of the samples employed for reconstructing

the NF data over the considered cylinder is 15153 (guard samples
included), significantly less than that (46080) required by the approach
in [11].

As already stated, the use of the spherical AUT modelling prevents
the possibility of considering measurement cylinders with a radius
smaller than one half the antenna maximum size, thus giving rise to
an increase of the truncation error for a given size of the scanning
zone. In order to highlight this drawback, another reconstruction of
the E-plane pattern, obtained by employing the spherical modelling,
is shown in Fig. 10. In such a case, the NF data have been collected
on a helix that covers a cylinder having the same height but radius of
36 λ. As can be clearly seen, the reconstruction is less accurate in the
far out side lobe region.
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At last, in order to test the algorithm performances in a more
severe condition, a further example is considered in the following. It
refers to a planar Tschebyscheff array with sidelobe ratio (SLR) equal
to 40 dB. Its elements, elementary Huygens sources linearly polarized
along z, are λ/2 spaced and cover a 6λ×51λ rectangle in the xz-plane.
The radius and the height of the scanning cylinder, and the semi-axes
of the prolate ellipsoid modelling the AUT are the same as in the first
example. The corresponding FF pattern in the E-plane is reported in
Fig. 11. Also in this case, the FF reconstruction results to be very
accurate.
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6. CONCLUSIONS

An innovative NF-FF transformation with helicoidal scanning has
been developed in this paper by using an ellipsoidal modelling of
the source, instead of the previously adopted spherical one. Such
a modelling, tailored for elongated antennas, allows one to consider
measurement cylinders with a diameter smaller than the antenna
height, thus reducing the error related to the truncation of the scanning
surface. Moreover, it contains the spherical modelling as particular
case and lowers significantly the number of required data when dealing
with elongated antennas. The reported numerical examples have
demonstrated the accuracy of the technique and its stability with
respect to random errors affecting the NF data.
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