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Abstract—The transition behavior of the k-surface of a lossy
anisotropic indefinite slab is investigated. It is found that, if the
material loss is taken into account, the k-surface does not show a
sudden change from hyperbola to the ellipse when one principle element
of the permittivity tensor changes from negative to positive. In fact,
after introducing a small material loss, the shape of the k-surface can
be a combination of a hyperbola and an ellipse, and a selective high
directional transmission can be obtained in such a slab.

1. INTRODUCTION

In recent years, left-handed metamaterial (LHM), which possesses
simultaneously negative permittivity and permeability, has attracted
much attention because of its exotic electromagnetic properties and
the potential applications [1–4, 20–30]. In 2003, the behavior of
wave propagation in media of which not all the principal elements
of the permeability and permittivity tensors have the same sign is
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investigated [5]. The k-surface of this kind “indefinite media” can
be hyperbola or ellipse for lossless cases. A consequent question is
what would happen when the k-surface changes from a hyperbola to
an ellipse. In this paper we investigate the transition behavior of the k-
surface in a non-magnetic anisotropic indefinite slab. It is found that,
when one principle element of the permittivity tensor satisfying Drude
model changes from negative to positive at the plasma frequency, the
k-surface does not show a sudden change from hyperbola to ellipse if a
small loss is taken into account. In fact, after introducing a small loss,
the shape of the k-surface can be a combination of a hyperbola and an
ellipse, and a selective high directional transmission can be obtained
in such a slab.

2. THE TRANSITION THE k-SURFACE

Consider a nonmagnetic uniaxial media with a scalar permeability
µ = 1 and a permittivity tensor

ε =


ε⊥ 0 0

0 ε⊥ 0
0 0 ε‖


 , (1)

which is given in the principal coordinates (x-y-z system). The optical
axis is along z-direction with a dielectric constant ε‖, as shown in Fig. 1.
For a conventional uniaxial medium, ε⊥ and ε‖ are both positive. In
this paper, we assume ε‖ obey the frequency dependence of Drude
model

ε‖ = 1 − ω2
p/[ω(ω + iγe)], (2)

where ωp is the plasmas frequency (we will normalize ωp = 1 in
following calculations) and γe stands for the material loss. The
dielectric constants in the directions perpendicular to the optical axis
are both simply assumed to be ε⊥ = 1.6+0.01i. In the GHz frequencies,
the idea to achieve this frequency dependence of ε‖ and ε⊥ can be
realized by a composite of periodically arranged metallic thin wires
aligned along the optical axis [11–13].

Consider such an anisotropic slab with thickness d as shown in
Fig. 1, where the angle between the optical axis of the slab and the
z-axis is θ (note that the optical axis is in the x-z plane).

The dispersion relation for a TM wave with the magnetic field
polarized along the y axis can be expressed as

k2
x

(
ε⊥ cos2 θ + ε‖ sin2 θ

)
+ k2

2z

(
ε‖ cos2 θ + ε⊥ sin2 θ

)
+2 sin θ cos θkxk2z

(
ε‖ − ε⊥

)
− ε‖ε⊥(ω/c)2 = 0, (3)
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Figure 1. An anisotropic slab with ε‖ = 1 − ω2
p/[ω(ω + iγe)] and

ε⊥ = 1.6.

where c is the speed of light in air. For an arbitrarily given kx

determined by the incidence, generally within the slab there should
be two solutions for k2z with opposite directions, say ki

2, kr
2. However,

when ε‖ cos2 θ + ε⊥ sin2 θ = 0, there will be only one solution of k2z for
any kx. This is just the case discussed in [ ], however in this paper, we
will show the solution in an more intuitive way.

In order not to lose generality, we assume ki
2, kr

2 are complex for
a given kx, and we plot respectively the real and imaginary parts of
k2z in one figure by calculating Eq. (3) with ω = 0.99ωp, θ = 0◦ and
different γe, as shown in Fig. 2. We see that the increasing of the
loss leads to the increasing of the imaginary part of k2z, except in the
normal incidence case.
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Figure 2. The k-surface of the dispersion relation of the indefinite
media with ω = 0.99ωp, θ = 0◦ and (a) γe = 0, (b) γe = 0.01, (c)
γe = 0.1, respectively.

In Fig. 3, we investigate the k-surface of the dispersion relation
when the sign of the real part of ε‖ changes from negative to positive.
For a lossless case, the negative or positive ε‖ corresponds to a
hyperbolic and an elliptic k-surface, respectively [5]. However, as
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shown in Fig. 3, after introducing a small loss, for example γe = 0.01,
no sudden change of the k-surface occurs as ε‖ changes its sign, instead,
the real part of the k-surfaces became combinations of hyperbolas and
ellipses, which brings drastically electromagnetic behaviors near the
plasma frequency.
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Figure 3. The transition of the k-surface from hyperbola to ellipse
with γe = 0.01. (a) θ = 0◦, ω = 0.99ωp, (b) θ = 0◦, ω = 1.00ωp, (c)
θ = 0◦, ω = 1.01ωp, (d) θ = 90◦, ω = 0.99ωp, (e) θ = 90◦, ω = 1.00ωp,
(f) θ = 90◦, ω = 1.01ωp.

As we mentioned, when ε‖ cos2 θ + ε⊥ sin2 θ = 0, there is only one
solution for k2z with a given kx in a lossless case [14], as shown in
Fig. 4(a). However, after introducing a small loss of the material, we
can always find two solutions for a given kx, as shown in Figs. 4(b)
and (c). It appears that assuming lossless for a negative permittivity
yields in some case ambiguity which can be solved after introducing a
small material loss.

3. HIGH DIRECTIVE TRANSMISSION PROPERTY OF
THE INDEFINITE SLAB

As is shown in Figs. 3(a)–(c), the imaginary part of k2z is very small
when kx is in the vicinity of zero, while the imaginary part of k2z is
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Figure 4. The k-surface for ε‖ cos2 θ + ε⊥ sin2 θ = 0 with θ = 6.425◦,
ω = 0.99ωp and (a) γe = 0, (b) γe = 0.001, (c) γe = 0.01.

a comparably large value if kx is away from the vicinity of zero. This
property of k-surface gives birth to the high transmission directivity.
Only the wave with kx = 0 can propagate through this slab.

To examine the property of high directive transmission, a more
general case is considered. Let a monochromatic H-polarized wave
H = ŷei(kzz+kxx) (with the time dependence e−iωt) be obliquely
incident upon an anisotropic slab with thickness d as shown in Fig. 1.
The permittivity tensor of the anisotropic medium is described as

ε =


 ε⊥ cos2 θ + ε‖ sin2 θ 0 − sin θ cos θ(ε⊥ − ε‖)

0 ε⊥ 0
− sin θ cos θ(ε⊥ − ε‖) 0 ε⊥ sin2 θ + ε‖ cos2 θ


 (4)

The analytical treatment is omitted here for the sake of brevity.
By using the boundary condition, the reflection and transmission
coefficients are found to be

T =
2k1z

(
ki

2 − kr
2

)
m

ei(k1z−kr
2−ki

2)d
(
eikr

2dp − eiki
2dq

) (5)

where

p=
(
k1z+ki

2m−n
)
(k1z−kr

2m+n) , p=(k1z+kr
2m−n)

(
k1z−ki

2m+n
)
,

m =
cos2 θ

ε⊥
+

sin2 θ

ε‖
, n = kx sin θ · cos θ ·

(
1
ε⊥

− 1
ε‖

)
.

In Figs. 5(a) and (b), the magnitude of transmission coefficient
T was plotted as a function of kx (normalized by k0 = ω/c) and ω
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(normalize by ωp) with different material loss γe. From these figures,
we clearly see that the oblique incident wave can not propagate through
the slab if ω is close to ωp, since the magnitude of transmission
coefficient T is close to zero when kx �= 0. In addition, the smaller
the material loss, the higher of the directivity of the transmission.
A full wave simulation is carried out to verify the high transmission
directivity. As shown in Fig. 5(c), only the wave with kx = 0 can
propagate through the slab.
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Figure 5. The transmission coefficient as a function of the transverse
wave vector kx, frequency ω and with (a) γe = 0.01, (b) γe = 0.1. The
thickness of the slab is 10λ (wavelength of the source) and θ = 0◦ in
this calculation. (c) The full wave verification of the high transmission
directivity property with ω = ωp and γe = 0.01. A magnetic dipole is
placed 1λ away from the left hand side of the slab.

As shown in Figs. 3(d)–(f), the imaginary part of k2z is very small
when kx = 1.25k0, while it is a comparably large value if kx �= 1.25k0.
So we also expect that the high directivity transmission property can
be observed when kx = 1.25k0. In order to study the transmission
property In this case, the air in the region1 and region3 is replaced by
a dielectric with and µ = 1, since the wave is an evanescent type in the
air with kx = 1.25k0. The transmission coefficient T as a function of
the transverse wave vector kx and frequency ω is shown in Fig. 6, and
only the wave whose transverse wave vector kx is close to 1.25k0 can
propagate through the slab. From Fig. 6(b), as the loss of the material
increases, the magnitude of the transmission coefficient decreases, but
the high directivity still exists. A full wave simulation is also carried
out for this case as shown in Fig. 6(c).

To give one more example, we also study the case of θ = 45◦. In
Fig. 7(a), the imaginary part of the k2zis very small when kx = 0.9k0,
while it is a comparably large value if kx �= 0.9k0. So the high
directivity transmission property is observed in Fig. 7(b) with kx =
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Figure 6. The transmission coefficient as a function of the transverse
wave vector kx and frequency ω. The thickness of the slab is 10λ
(wavelength of the source) and θ = 90◦ in this calculation. (a)
γe = 0.01, (b) γe = 0.1, (c) The full wave simulation with and µ = 1
as the background material.
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Figure 7. (a) The k-surface with ω = 1.00ωp with θ = 45◦ and
γe = 0.01. (b) The transmission coefficient with θ = 45◦. (c) The
transmission coefficient with θ = 135◦. (d) The full wave simulation
with and µ = 1 as the background material.
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0.9k0. The magnitude of the Transmission coefficient with θ = 135◦ is
shown in Fig. 7(c), and a full wave simulation is also carried out for
this case as shown in Fig. 7(d).

4. CONCLUSION

We investigate the k-surface of an anisotropic indefinite slab whose
principal elements of the permittivity tensor can have different signs.
It is found that, if the material loss is taken into account, the k-surface
does not show a sudden change from hyperbola to ellipsis when the
principle element of the permittivity tensor changes from a negative
value to a positive one. In fact, after introducing a small material loss,
the shape of the k-surface can be a combination of a hyperbola and
an ellipse, so the conventional method to categorize the k-surface into
hyperbolic and elliptic types seems not appropriate for the indefinite
media with material loss. The transmission property of the anisotropic
slab is also discussed during this transition of the principle element of
the permittivity tensor. It is shown that the high directive transmission
property of the anisotropic slab can be observed. The back physics
of the high directivity transmission property, as shown in Fig. 3 and
Fig. 7, is due to the imaginary part of the k2z, that is the imaginary
part of k2z is a small value for some specific kx, while is a comparably
large value for other kxs. In addition, by adjusting the orientation
of the optical axis, we can get different high directivity for different
kxs. Since the electrically anisotropic material discussed here can be
easily fabricated in GHz frequencies, our result may solve the ambiguity
resulted from the sudden change of k-surface in the lossless case and
find some practical application in designing of new microwave devices
such as high directive antennas and etc.

The electrically anisotropic material discussed here can be easily
fabricated in GHz frequencies by a composite of periodically arranged
metallic thin wires aligned along the optical axis. In optical region, the
anisotropic indefinite media had been experimentally fabricated based
on a composite of altering layers of dielectric and metal [19], and it had
become a research-focus recently because of its application in far-field
imaging [17–19]. Our result here may solve the ambiguity of indefinite
media resulted from the sudden change of k-surface in the lossless case
and find some practical application in designing of new devices such
as high directive antennas and etc.
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