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Abstract—The scattering characteristic of paraxial gaussian beam
from two dimensional dielectric rough surfaces is studied in this paper.
The modification of the Kirchhoff approximation theory for rough
surface scattering by an incident gaussian beam instead of a plane wave
are developed based on conventional Kirchhoff scattering theory and
plane wave spectrum expansion method. The coherent and incoherent
scattered intensity and cross section of two dimensional dielectric rough
surfaces is derived in detail. As a application, under incidence wave
length λ = 1.06 µm, we calculate the coherent and incoherent scattered
intensity and cross section of Gaussian beam scattering from plating
aluminium dielectric rough surfaces change with the scattering zenith
angles in different rough surface correlation length, rough surface
height root mean square and other conditions. In the same scattering
conditions, we compare the coherent and incoherent scattered section
between the gaussian beam and plane wave to prove that our methods
and programming cods is correct. The numerical results are shown
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that the incident gaussian beam size is much larger compared with
the surface height correlation length, the normalized scattering cross
section is the same as for an incident plane wave. The ratio between the
beam size and the surface height correlation length play an important
role in the scattering characteristic of the gaussian beam from two
dimensional dielectric rough surfaces. The ratio is bigger, the coherent
and scattered intensity and section is more remarkable and on the
contrary the incoherent scattered intensity and section is relatively
smaller.

1. INTRODUCTION

There has been an increasing interest in and need for investigation
electromagnetic wave scattered from rough surface [1–4]. In recent
years, with development of the laser technology, it is necessary to utilize
the electromagnetic scattering theory and theoretically analyses the
light scattering from a random rough surface [5, 6]. It is often assumed
that the incident field is a plane wave for the simplification of the
analyses that are obtained in [7, 8]. Dahl [9] has derived the geometric
equations for Gaussian beams and discussed the characteristic of
propagation on the Gaussian beams from a class of inhomogeneous
anisotropic media. Wu and Guo [10] have utilized a new recursive
algorithm to compute the scattering coefficients for multilayered
cylinders arbitrarily located in a Gaussian Beam. On the other hand, in
the numerical solution of the integral equations that govern scattering
from rough surfaces, it is a common practice to assume that the
incident field is a gaussian beam in order to limit the area of the rough
surface that is illuminated. Collin [11] firstly discusses scattering of
gaussian beam form perfectly conducting rough surfaces based on full
wave method and draw a conclusion that when the incident gaussian
beam has a plane phase front over the extent of the rough surface
patch and the linear dimensions of the rough patch are larger compared
with the surface height correlation length, the normalized incoherent
scattering cross section is the same as for an incident plane wave,
which gives support to the use of a taped illumination function in
the numerical analysis of rough surface scattering. Shen and Dou [12]
have discussed that Gaussian Beam Scattering from a Semicircular
Channel in a Conducting Plane. Subsequently Chen [13] and Xue [14]
has obtained the formula of the incoherent scattering cross section
for dielectric rough surfaces using Kirchhoff scalar approximation.
Chabory and Sokoloff et al. [15] apply the Gabor expansion to describe
magnetic and electric currents given on a regular curved interface in
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dimension 2 by a new kind of gaussian beams. Notice that the results
given in [11] and [14] are available for the incoherent scattering but not
for the coherent scattering, which occurs when the surface standard
deviation is small. The purpose of this paper is to determine the
modifications required in the Kirchhoff scattering theory for rough
surface for both coherent and incoherent scattering when the incident
field is a gaussian beam instead of a plane wave. For the classical
KA scattering theory, we will show that when the incident field is a
gaussian beam the essential modifications required of the theory are
a multiplication of the surface illumination function by a Gaussian
illumination function and a change in the normalization factor that
defines the normalized scattering cross-section and scattered intensity
of the surface.

2. SCATTERING FIELDS OF OFF-AXIS GAUSSIAN
BEAM BY TWO DIMENSIONAL DIELECTRIC ROUGH
SURFACES

Consider a monochromatic gaussian beam TEM00 propagates along Xi

axis in the homogeneous free space. The rough surface, with a profile
z′ = z(x′, y′), and the incident gaussian beam are shown in Fig. 1.
The reference coordinate system is OXY Z and the beam coordinate
system is OiXiYiZi. The center of the beam waist is at the point
Oi(−x0, 0, z0). The distance from the beam waist center to the origin
of the OXY Z coordinate system is ρ0. The incident beam axis is at
an angle θ0 with respect to the z axis.
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Figure 1. Geometry of Paraxial Gaussian beam scattering by rough
surface.

We assume that the gaussian beam is the linear polarization on
the beam waist plane and the electric field Ei(ri) satisfies

E(0, yi, zi) = ŷiE0 exp
[
−(y2

i + z2
i )/w2

0

]
. (1)
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Thus the incident gaussian beam is given by [16]

E(xi, yi, zi) =
1

4π2

+∞∫
−∞

+∞∫
−∞

f(kyi, kzi) exp(−iki · ri)dkyidkzi, (2)

where k2
xi + k2

yi + k2
zi = k2, k is the free space wave number, w0 is the

beam waist radius, and

f(kyi, kzi) = f(kyi, kzi)
(
−kyi

kxi
x̂i + ŷi

)
, (3)

f(kyi, kzi) = πw2
0E0 exp

[
−

(k2
yi + k2

zi)w
2
0

4

]
. (4)

When the statistical characteristics of the rough surface satisfy
Kirchhoff approximation conditions, that is kl > 6, l2 > 2.76σ · λ
and the root-mean-square slope s < 0.25, where λ is the incident
wavelength, σ is the surface standard deviation and l is the correlation
length, the scattered filed of a plane wave spectrum can be expressed
in the OXY Z system [17]

Es
pq = − ike−ikR

4πR
Ei

q0

∫
Ūpq exp[−ik · (r′ − ρ0)] exp(iks · r′)ds′, (5)

where Ūpq = apq0 + apq1Zx + apq2Zy, Zx or Zy is the surface slope
along x or y direction on the rough surface; Ei

q0 is the incident
electric filed amplitude, where q = h, v corresponding to the component
perpendicular to or parallel with the incident plane, given by

Ei
h0 =

1
4π2

· f · (ki × ẑ)
|ki × ẑ| , Ei

v0 =
1

4π2
· f · (ki × ki × ẑ)

|ki × ki × ẑ| . (6)

When we include the integration over the incident plane wave
spectrum, the gaussian beam scattered field is found to be given by

Es
hh = − ik0e

−ik0R

4πR

+∞∫
−∞

+∞∫
−∞

dkyidkzi

∫ [(
Ei

h0αhh0 + Ei
v0αhv0

)

−vx

vz

(
Ei

h0αhh1 + Ei
v0αhv1

)
− vy

vz

(
Ei

h0αhh2+Ei
v0αhv2

)]
exp

[
−ikxi

(
x′ sin θ0−z′ cos θ0+ρ0

)
− ikyiy

′ − ikzi

(
x′ cos θ0 + z′ sin θ0

)]
exp

(
iks · r′) ds′. (7)
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To evaluate the integration over the incident plane wave spectrum,
we assume that the beam waist center is far from the surface so that
is large relative to the linear dimensions of the rough patch. This
condition is easily met in most scattering experiments. With the above
assumption, the stationary phase method is used and it is a relatively
straightforward procedure to derive the following expression for the far
zone hh polarization scattered field

Es
hh =

k2
0w

2
0E0

4πRρ0
e−ik0(R+ρ0)Shh

L∫
−L

L∫
−L

exp
[
−k2

0w
2
0

4ρ2
0

(x′2 cos2 θ0 + y′2)
]
· exp(iV · r′)ds′, (8)

where V = ks − k, S is the polarization factor related with refractive
index of rough surface and the incident and scattering directions. For
other polarization scattered field, the expressions are the same with
(8) only with different S, which have the following forms

Shh =
1
2

{
R⊥0(cos θ0 + cos θs) cosφs +

sin θs cosφs − sin θ0

cos θ0 + cos θs

[R⊥0(sin θ0−sin θ0 cosφs)−R⊥1 cosφs(cos θ0 + cos θs)]} , (9)

Shv =
1
2

{
R//0(1 + cos θ0 cos θs) sinφs −

sin θs cosφs − sin θ0

cos θ0 + cos θs

[R//0 sin θ0 cos θs+R//1(1+cos θ0 cos θs)] sinφs

}
, (10)

Svh =
1
2

{
R⊥0(1 + cos θ0 cos θs) sinφs −

sin θs cosφs − sin θ0

cos θ0 + cos θs

[R⊥0 sin θ0 cos θs+R⊥1(1+cos θ0 cos θs)] sinφs} , (11)

Svv =
1
2

{
R//0(cos θ0 + cos θs) cosφs +

sin θs cosφs − sin θ0

cos θ0 + cos θs

[R//1(cos θs+cos θ0) cosφs−R//0(sin θs−sin θ0 cosφs)]
}
. (12)



228 Wang, Wu, and Li

3. THE COHERENT AND INCOHERENT SCATTERED
INTENSITY AND SECTION OF TWO DIMENSIONAL
DIELECTRIC ROUGH SURFACES AND ITS
NUMERICAL RESULTS

According to Eq. (8), the coherent scattered intensity is derived

Ic =
∣∣< Es

pq >
∣∣2 =

∣∣∣∣k2
0w

2
0E0

4πRρ0
· Spq

∣∣∣∣
2

·
∫∫ ∫∫

exp
{
−k2

0w
2
0

4ρ2
0

[
(y′2 + y′′2) + (x′2 + x′′2) cos2 θ0

]}
· exp

{
j
[
vx(x′ − x′′) + vy(y′ − y′′)

]}
· < exp(jvz · z′) >

· < exp(−jvz · z′′) > ds′ds′′. (13)

Using variables transform and the property of gaussian rough surface
that < exp(jvzz) >= exp(−σ2v2

z/2), we obtain

Ic =
∣∣< Es

pq >
∣∣2

=
(
k0w0E0

4πR

)2

· 2π |Spq|2
cos θ0

·
2L∫

−2L

2L∫
−2L

exp
[
−k2

0w
2
0

8ρ2
0

(x2
d cos2 θ0 + y2

d)
]

·
{
1−erfc

[
k0w0√

8ρ0

(2L−|xd|) cos θ0

]}
·
{
1−erfc

[
k0w0√

8ρ0

(2L−|yd|)
]}

· exp[j(vx · xd + vx · yd)] · exp(−σ2 · v2
z)dxddyd, (14)

where erfc(y) = 2√
π

∫ +∞
y e−t2dt represents the complementary error

function.
We now assume that at the edge of the rough surface patch, the

beam illumination is very small. From an examination of Eq. (14),
we see that we require L cos θ0/w to be at least as large as 2, where
w is the beam size defined by 2ρ0/k0w0. Hence the arguments of
the complementary error function are at least as large as 2.8 and the
complementary error function is negligible relative to unity for small
values of xd and yd. With the increase of values of xd and yd, the beam
illumination function decreases quickly and the integrand in Eq. (14)
vanishes, thus only values of xd and yd that are small relative to L will
give significant contributions to the scattered intensity.

Under the condition given above the expression for the coherent
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scattered intensity reduces to the following simple form

Ic =
(
k0w0E0

4πR

)2

· 2π |Spq|2
cos θ0

· 2πw2

cos θ0
· exp

(
−σ2 · v2

z

)
· exp

[
−w2

2
(
v2
x/ cos2 θ0 + v2

y

)]
(15)

The incident gaussian beam is readily evaluated using the stationary
phase method. It is given by [13]

Ei
q = aijk0πw

2
0E0

e−jk0ρ0

2πρ0
exp

[
−k2

0w
2
0

4ρ2
0

(
x2 cos2 θ0 + y2

)]
· exp [−jk0 (x sin θ0 − z cos θ0)] (16)

where ai is the unit polarization vector in the beam coordinate system.
With the above equation, the total power of the incident field on the
illuminated surface is written as

Pi =

+L∫
−L

+L∫
−L

∣∣∣ +Ei
∣∣∣2 dx′dy′ =

πw2
0E

2
0

2 cos θ0
(17)

According to the definition of Thorsos for the scattering cross
section [10], the normalized coherent scattering cross section of the
incident gaussian beam field is given by

σ0
pqc =

4πR2 · Ic

Pi

=
2k2

0w
2

cos θ0
·|Spq|2 ·exp

(
−σ2 ·v2

z

)
·exp

[
−w2

2
(
v2
x/ cos2 θ0+v2

y

)]
. (18)

Compared the above expression with that for a plane wave, we found
that for the gaussian beam, the contribution to the coherent scattering
comes form the region around the specular direction and the angular
width is related with the beam size, but for the case of plane wave
incidence, the Kirchhoff scalar result shows that the contribution only
occurs in the specular direction. Fig. 2 calculates the dependence of
bistatic σ0

pqc for HH polarization on beam size, with θ0 = 0, φs = 0,
λ = 1.06 µm, σ = 0.1λ, l = λ and the refractive index n = 2.43+ i10.7.
It is shown that the angle width of σ0

pqc decreases as beam size increases,
which means the coherent scattered intensity more focuses in the
specular direction as the incident field approaches to the plane wave.
In Fig. 3, the specular results for the gaussian beam and the plane
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wave are compared for 0–40 degree incident angles. When the beam
size is much larger than the surface height correlation length, σ0

pqc is
almost the same for two cases.

The normalized incoherent scattering cross section for gaussian
beam is derived

σ0
pqi =

k2
0

π
· |Spq|2 ·

2L∫
−2L

2L∫
−2L

exp
(
−x2

d cos2 θ0 + y2
d

2w2

)
· exp(−σ2v2

z)

·
{
exp[σ2v2

zc(τ)] − 1
}
· exp[j(vxxd + vyyd)]dxddyd, (19)

where c(τ) is the height correlation function and τ =
(
x2

d + y2
d

)1/2

stands for the distance between two points on the rough surface.
We can see that since the existence of the term {exp[σ2v2

zc(τ)]−1},
only small values of xd and yd with respect to L give significant
contributions to the incoherent scattering cross section because c(τ)
becomes very small for τ greater than a few correlation lengths. When
the beam size is much larger than surface height correlation length,
the illumination function in Eq. (19) is close to one, which leads to
the incoherent scattering cross section as the same as that for an
incident plane wave. Because the condition mentioned above normally
occurs in practice, a taped plane wave (paraxial gaussian beam) is
used commonly instead of a plane wave in the rough surface scattering
numerical calculations fro many researchers [14–16].

Let us make a comparison of the results for gaussian beam and
plane wave. Suppose the roughness parameters σ = 0.2 µm, l = 2.7 µm
and other conditions is the same as Fig. 2 and Fig. 3 do. Fig. 4
and Fig. 5 calculate the backscattering and bistatic scattering for HH
polarization, respectively. From the results we can see that for larger
beam size there is little different with two cases, but for small beam size
(w = l) the difference is clear, which means the approximation of plane
wave with a thin incident beam is not suitable, an agreement with the
conclusion of literature [10]. Fig. 6 and Fig. 7 respectively calculate
the effect of beam size on the normalized coherent and incoherent bi-
static scattered intensity. From the results, we find that the effect of
beam size on the normalized coherent and incoherent bistatic scattered
intensity are consistent with their coherent and incoherent scattered
intensity and cross section.

In the course of derivation and computation, noticed that under
the Kirchhoff scalar approximation σ2v2

z is a small quality, so the factor
exp[σ2 · v2

z · c(τ)] in Eq. (8) can be expanded as an infinite series. With
the assumption that the linear dimension of the illuminated surface
patch is much larger than the correlation length, there is no significant
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error introduced by extending the integral limits to infinite. Then
Eq. (19) will be written as

σ0
pqi = (k0l)2 · |Spq|2 · exp(−σ2v2

z) ·
∞∑

n=1

(
σ2v2

z

)n

n! · n

·
[(

1 +
l2 cos2 θ0

2n · w2

)
·
(

1 +
l2

2n · w2

)]− 1
2

· exp
[
−v2

xl
2

/
4n

(
1+

l2cos2θ0

2n·w2

)]
·exp

[
−v2

yl
2

/
4n

(
1+

l2

2n·w2

)]
. (20)

When the condition that l2 � 2w2 holds, the incident beam
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illumination function is close to one, and the relevant terms can be
negligible in Eq. (20). Substituting the detailed expression of the
polarization factor |Spq|2 into Eq. (20), we obtain

σ0
pqi =

(k0l)2

4
· exp(−σ2v2

z) ·
[
|a0|2 − 2Re

{
vx

vz
a0a

∗
1

}
+ |a1|2 ·

v2
x

v2
z

]

·
∞∑

n=1

(
σ2v2

z

)n

n! · n · exp
[
−(v2

x + v2
y) · l2/4n

]
. (21)

Comparison of the above equation with the normalized incoherent
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scattering cross section in literature [17], given by

σ0
pqi =

(k0l)2

4
· exp

(
−σ2v2

z

)
·
[
|a0|2 − 2Re

{
vx

vz
a0a

∗
1 +

vy

vz
a0a

∗
2

}]

·
∞∑

n=1

(
σ2v2

z

)n

n! · n · exp
[
−(v2

x + v2
y) · l2/4n

]
, (22)

and notice that the term a2 in Eq. (22) is zero while let φ = 0.
In addition, we consider the polarization contribution of surface slop
term, corresponding to the third term in square bracket in Eq. (21), if
neglected it our results can reduce to the case for a plane wave.

4. CONCLUSION

In this paper, the scattering of paraxial gaussian beam by two
dimensional dielectric random rough surfaces is discussed in detail.
Based on Kirchhoff scalar scattering theory and plane wave spectrum
expansion method, and the formula of the normalized coherent
scattering cross section is derived with the linear dimension of rough
surface patch larger twice than the ratio of the beam size to the
incident angle cosine. Under incidence wave length λ = 1.06 µm, we
calculate the coherent and incoherent scattered intensity and section
of Gaussian beam scattering from plating aluminium dielectric rough
surfaces change with the scattering zenith angles in different rough
surface correlation length, rough surface height root mean square and
other conditions. In the same scattering conditions, we compare the
coherent and incoherent scattered section between the gaussian beam
and plane wave to prove that our methods and programming cods is
correct. The numerical results are shown that w > l, the normalized
scattering cross section is the same as for an incident plane wave. The
ratio w/l plays an important role in the scattering characteristic of the
gaussian beam from two dimensional dielectric rough surfaces. The
ratio is bigger, the coherent and scattered intensity and section is more
remarkable and on the contrary the incoherent scattered intensity and
section is relatively smaller.
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