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Abstract—Method proposed by Maslov has been used, to remedy
the problem of geometrical optics, for a two dimensional Perfect
electromagnetic conductor (PEMC) Gregorian system. It generates
an integral form of solution near the caustic that can be evaluated
analytically/numerically, or with uniform asymptotic techniques.
Away from the caustic it recovers the geometrical optics field.
Numerical computations are made to calculate the field around the
caustic of a Gregorian system.

1. INTRODUCTION

Perfect electromagnetic conductor (PEMC) is a non-reciprocal
generalization of both perfect electric conductor (PEC) and perfect
magnetic conductor (PMC). Possibilities for the realization of a PEMC
boundary has been suggested by Lindell [1, 2] in terms of a layer of
certain non reciprocal materials resting on a PEC plane. Parameters
of a bi-isotropic medium can be chosen so that the interface of the
layer acts as a PEMC boundary. The boundary conditions for the
perfect electric conductor and perfect magnetic conductor are given by
following equations

n × E = 0, n · B = 0 (PEC) (1a)
n × H = 0, n · D = 0 (PMC) (1b)

where n denotes the unit vector normal to the boundary surface. The
PEMC boundary conditions are of more general form

n × (H +ME) = 0, n · (D −MB) = 0 (PEMC) (2)
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the latter condition can also be written as

n · (ε0E −Mµ0H) = 0 (3)

put together, these can be expressed as the vector condition

ME = −H + (1 + M2η2
0)nn · H, η0 =

√
µ0/ε0 (4)

where M denotes the admittance of the PEMC boundary. PMC
corresponds to M = 0 while PEC is obtained as the limit M → ±∞.
These conditions have a basic theoretical intrust because, in differential
form formalism [3, 4], they correspond to the simplest possible medium
by a single scalar medium parameter M [1]. The medium is also called
the axon. Because PEMC does not allow electromagnetic energy to
enter, it can serve as boundary material. The most notable difference is
the nonreciprocity of the PEMC boundary when M has a finite nonzero
value. Nonreciprocity of the PEMC boundary can be demonstrated by
showing that the polarization of plane wave reflected from its surface is
rotated, the sense and angle of rotation depending on the admittance
parameter M . The PEMC medium can be represented as the limit of
a bi-isotropic medium with infinite values for all of its four parameters
ε = qM , µ = q

M , ξ = ζ = q, q → ∞. Focusing systems [5–8] and
PEMC medium [9–23] have been discussed by many authors.

Here, we have extended our previous work [24] to a new Gregorian
system, in which main reflector is PEMC while sub-reflector is PEC,
by evaluating the field which is valid in the caustic region of a PEMC
cylindrical Gregorian system by using Maslove’s method. Maslov’s
method is a systematic procedure for predicting field in the caustic
region. Maslov’s method has been reviewed and applied by many
authors [25–44].

2. RECEIVING CHARACTERISTIC OF CYLINDRICAL
GREGORIAN REFLECTOR

Gregorian system consists of two reflectors, one is parabolic main
reflector (PEMC in present discussion) and another is elliptical sub
reflector (PEC). Gregorian system has many advantages over a single
parabolic reflector. The system provides an attractive option for
controlling the amplitude and the phase in the quiet zone. The single
parabolic reflector does not allow much control over the aperture
power distribution except for what is achievable by changing the focal
length of the single parabolic reflector. The Gregorian reflector has an
extra degree of freedom to control the aperture field distribution. In
general, Gregorian reflector have shorter main reflector focal lengths,
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and hence are more compact than conventional parabolic reflectors,
but suffers performance degradation due to substantial interference
from the secondary reflector. Additional benefits of Gregorian system
include the ability to place the feed at a convenient location, and to
reduce spillover and side-lobe radiation.

The equation of each reflector is given by

ζ1 =
ξ2
1

4f
− f + c (5)

ζ2 = a

[
1 − ξ2

2

b2

] 1
2

(6)

where

c2 = a2 − b2, aR2 = cζ2 − a2, aR1 = cζ2 + a2

where (ξ1, ζ1) and (ξ2, ζ2) are the Cartesian coordinates of the point
on the parabolic and elliptical reflectors, respectively.

Incident wave is given by

Ei = uy exp(jkz)

Thus the geometrical ray expression of the reflected wave is

Er = Er
0J

−1
2 exp[−jk(S0 + t1 + t+ φ1)] (7)

where

J(t) =
D(t)
D(0)

=
1

D(0)
∂(x, z)
ξ1, t

=
1

D(0)

∣∣∣∣∣∣
∂ξ2
∂ξ1

+
∂px2

∂ξ1
t

∂ζ2
∂ξ1

+
∂pz2

∂ξ1
t

px2 pz2

∣∣∣∣∣∣
=

1
D(0)

[
−2

∂(ψ − α)
∂ξ1

t− cos(ψ − 2α)
cosψ

∂ξ2
∂ξ1

]

= 1 − t

R1

R1 =
√

(c+ ζ2)2 + ξ2
2

S0 = −ζ1 = 2f
cos 2α

1 + cos 2α
− c

t1 =
√

(ξ2 − ξ1)2 + (ζ2 − ζ1)2,

t =
√

(x− ξ2)2 + (z − ζ2)2

ξ1 = 2f tanα
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ζ1 =
ξ2
1

4f
− f + c

ξ2 =
b2 sinψ√

c2 cosψ − b2

ζ2 =
a2 sinψ√
c2 cosψ − b2

tanψ =
a sin 2α

c+ a cos 2α
(8)

The initial value Er
0(a) is obtained by

Er
0 = R̃ · Ei

The reflection dyadic is defined by

R̃ = RcoĨ +RcrJ̃

Ĩ = uxux + uyuy

J̃ = uz × Ĩ

where co means co-polarized while cr means cross polarized. substitute
E and H in boundary condition (4)

Er
0 = − 1

cos2 α+M2η2
0

[
(M2η2

0−cos2 α)Ei−2Mη0 cosα(uz × Ei)
]

(9)

R̃ = − 1
cos2 α+M2η2

0

[
(M2η2

0−cos2 α)Ĩ−2Mη0 cosαJ̃
]

(10)

Rco = −M2η2
0 − cos2 α

cos2 α+M2η2
0

(11a)

Rcr =
2Mη0 cosα

cos2 α+M2η2
0

(11b)

The rotation angle is obtained as

tanφ1 =
Rcr

Rco
= − 2Mη0 cosα

M2η2
0 − cos2 α

(12)

It is readily seen that the GO expression of the reflected wave
becomes infinity at the point F2 as is expected. We can derive the
expression which is valid at the focal point using Maslov’s method by
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using the following expression by [35]

Er =

√
k

j2π

∫ ∞

−∞
Er

0

[
D(t)
D(0)

∂pz2

∂z

]−1
2

exp−jk[S0 + t1 + t− z(x, pz2)pz + zpz2 + φ1]dpz2 (13)

The value of
[
J(t)∂pz2

∂z

]−1
2 is given by by [35]

[
J(t)

∂pz2

∂z

]−1
2

=
√
R1

sin(2ψ − 2α)

The phase function S(pz) is given by [35]

S(pz) = S0 + t1 + Sex + φ1

where

Sex = −ρ cos(2ψ − 2α+ φ) + ξ2 sin(2ψ − 2α) + ζ2 cos(2ψ − 2α)

tanφ =
x

z

Field expression may be written as

Er(x, z) =

√
k

j2π

[∫ A2

A1
+

∫ −A1

−A2

]
(Rcouy −Rcrux)

√
R1

exp[−jk(S0 + t1 + Sex + φ1)]d(2α) (14)

When M = ±∞ (PEC), Rcr = 0, Rco = −1, therefore (13) becomes as

Er(x, z)=

√
k

j2π

[∫ A2

A1

+
∫ −A1

−A2

]√
R1 exp[−jk(S0+t1+Sex)]d(2α) (15)

In the above equation R1, S0, t1 and Sex are expressed in terms of α
and A1, A2 are the subtention angles 2α at the edges of the parabolic
and hyperbolic cylinders.

3. RESULT AND DISCUSSION

Field pattern around the caustic of a two dimensional PEMC Gregorian
reflector antenna are determined using Equation (13) by performing
the integration numerically. Figure 2 and Figure 3 contain the
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Figure 1. Gregorian system.
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Figure 2. Comparison of co polarized field distribution along z-axis
for Mη0 = 600000 (solid line), Mη0 = 5.1 (dot dashed line), and
Mη0 = 3.5 (thick solid line), Mη0 = 2.2 (long dashed line), and
Mη0 = 0.5 (dashed line).

comparison of plots of co-polarized field distribution for different value
of Mη0 along z-axis and x-axis respectively. Plot for Mη0 = 600000
is in good agreement with two dimensional PEC Gregorian reflector
antenna, that is, field patterns of Equation (14). Figure 4 and Figure 5
contain the comparison of plots of cross polarized field distribution
different values of Mη0. For Mη0 = 600, 000 field vanishes. Figure 6
to Figure 9 contain the comparison of plots of co-polarized field and
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Figure 3. Comparison of co polarized field distribution along x-axis
for Mη0 = 600000 (solid line), Mη0 = 5.1 (dot dashed line), and
Mη0 = 3.5 (thick solid line), Mη0 = 2.2 (long dashed line), and
Mη0 = 0.5 (dashed line).
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Figure 4. Comparison of cross polarized field distribution along z-axis
for Mη0 = 0.5 (solid line), Mη0 = 2.2 (dot dashed line), and Mη0 = 3.5
(thick solid line), Mη0 = 5.1 (long dashed line), and Mη0 = 600000
(no plot).
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Figure 5. Comparison of cross polarized field distribution along x-axis
for Mη0 = 0.5 (solid line), Mη0 = 2.2 (dot dashed line), and Mη0 = 3.5
(thick solid line), Mη0 = 5.1 (long dashed line), and Mη0 = 600000
(no plot).
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Figure 6. Comparison of co polarized field distribution along z-axis
for Mη0 = 500000 (solid line), Mη0 = 4.1 (dot dashed line), and
Mη0 = 2.5 (thick solid line), Mη0 = 1.5 (long dashed line), and
Mη0 = 1.1 (dashed line).
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Figure 7. Comparison of co polarized field distribution along x-axis
for Mη0 = 500000 (solid line), Mη0 = 4.1 (dot dashed line), and
Mη0 = 2.5 (thick solid line), Mη0 = 1.5 (long dashed line), and
Mη0 = 1.1 (dashed line).
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Figure 8. Comparison of cross polarized field distribution along z-axis
for Mη0 = 1.1 (solid line), Mη0 = 1.5 (dot dashed line), and Mη0 = 2.5
(thick solid line), Mη0 = 4.1 (long dashed line), and Mη0 = 500000
(no plot).
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Figure 9. Comparison of cross polarized field distribution along x-axis
for Mη0 = 1.1 (solid line), Mη0 = 1.5 (dot dashed line), and Mη0 = 2.5
(thick solid line), Mη0 = 4.1 (long dashed line), and Mη0 = 500000
(no plot).

cross polarized field distribution For all plots, it is assumed that at
kf = 25, a = 20, b = 6, d = 9, D = 20. The location of the caustic
may be observed and verified easily. It is observed from comparison
that cross polarized field intensity decreases as Mη0 increases. Cross
polarized field components vanish for Mη0 approaches to infinity and
co polarized field intensity increases as Mη0 increases till it approaches
to results of two dimensional PEC Gregorian reflector antenna the field
patterns of Equation (14). It may be noted that limits of the integrals
in Equation (13) are selected using the following relations by

A1 = φν = 2 arctan
(
D

2f

)

A2 = arctan
(
d

2c

)
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