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Abstract—In this paper the phase centre of a pure mode, smooth wall,
conical horn is studied. The method employed uses phase information
obtained by aperture integration of the phase corrected mode field but
differs from earlier presentations in first reducing the radiation integrals
in terms of an identified family of functions prior to integration. The
result is formulas for the principal plane radiation patterns that better
exemplify operation of the antenna. The procedure uses these formulas
together with least squares minimization to determine a best fit phase
centre for each principal plane. It is shown that contrary to published
results, even in its principal planes, there is no unique phase centre
that is a property of the horn alone. The use of such a horn as
the feed element of a radio-optical antenna system is then considered.
It is shown that in situations where cost is paramount and the well
known drawbacks of its unequal principal plane beamwidths and the
diminished gain that results from lack of a uniquely defined phase
centre can be tolerated, perhaps contrary to conventional wisdom, the
pure mode, smooth wall, conical horn does have a useful role to play.
This is illustrated by a design example in which such a horn was used
to feed a 6.4 m. dish working in X-band with a Gregorian feed system.
The result is confirmation of the usefulness of the method presented
here for location of a best fit phase centre.

1. INTRODUCTION

As the feed element in a radio-optical antenna, either prime focus or
intermediated through a sub-reflector in a Cassegrain or Gregorian
configuration, the pure mode, smooth wall, conical horn (PMSWCH)
has had a bad press. It is generally rejected out of hand because
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of the inequality of its principal plane radiation patterns, possible
mode conversion at its throat and lack of a unique phase centre, all of
which for the system as a whole result in reduced aperture efficiency,
diminished gain and poor cross-polar performance.

In applications like radio astronomy or in receiving telemetry from
deep space probes, where performance is more important than cost,
these are valid objections and such horns have rightly been set aside.
However the one great feature that the PMSWCH does have in its
favour is cost. By comparison with its much preferred corrugated
cousins, it is extremely simple to make and so has a clear margin
in situations where there can be greater tolerance of the defects listed
above and only one or a few horns are needed, so that there are no
manufacturing economies of scale to be had. This suggests that a
revisit may be timely.

As a step in this direction, recently new formulas for radiation
from a PMSWCH have been derived [1]. Like many preceding analyses,
they are based on aperture integration of a TE11 mode launched
from the throat of the horn and containing a quadratic phase term
to correct for the spreading over a plane aperture of what is essentially
a spherical wave. Also like their predecessors, obtaining results from
them ultimately requires numerical integration.

However by first partly reducing the raw integral through analysis
prior to any numerical integration, the E and H plane patterns are
able to be cast into the form of the sum and difference of the first two
members of a generic family of functions, in this way better showing
the reasons for the observed differences in the two patterns and the
displacement of their phase centres. Radiation patterns calculated
from these formulas have been shown to be in excellent agreement with
those obtained from an electromagnetic simulator for any flare angle
likely to be of practical importance [1]. Using the phase information to
determine phase centre is therefore something that can be done with
a high degree of confidence in the result.

2. PRINCIPAL PLANE RADIATION FIELDS

The geometry of a PMSWCH driven from a circular waveguide
propagating only the fundamental TE11 mode is shown in Fig. 1.
Referred to a coordinate system having the centre of the aperture as
origin, the following have been shown to be the spherical components
of the principal plane radiation fields:

In the E-plane

Eθ =
jkAV11e

−jkr

2r
sinφC11k11 (W0 −W2) (1)
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Figure 1. Horn geometry.

In the H-plane

Eφ =
jkAV11e

−jkr

2r
cosφ cos θC11k11(W0 + W2) (2)

where V11 is the mode voltage,
C11 = J1 (k11)

√
π
2

(
k2

11 − 1
)
,

k11 = 1.841 . . . is the first zero of J ′
1(x),

Wn (kA, tanα, θ) =
1∫
0
wJn (k11w)Jn (kAw sin θ) e−j

1
2
kAw2 tanαdw

is a family of integrals that must be evaluated numerically,
A is the horn aperture radius,
α is the semi-angle of the horn, and
θ is the angle measured from the axis of symmetry (boresight axis)

of the horn.
It is from the phase information contained in these formulas that

the corresponding phase centres are to be found.

3. DEFINING PHASE CENTRE

There is a certain amount of elasticity in the literature in relation to
defining phase centre [2]. The concept of there being a phase centre is
rooted in the idealised notion that the radiation field of an antenna is
emitted as a spherical wave. Traced back to its apparent origin, the
phase centre is then the point from which the wave appears to have
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come. If the antenna is to act as the primary feed in some kind of
radio-optical system, then the aim will be to have the phase centre so
defined coincide with a focal point of the optical system, either that
of the primary reflector in the case of a prime focus system or of a
sub-reflector in the case of a multi-element system.

Frequently in practice a problem arises because no unique phase
centre exists, leaving open the question of where to go from there.
Sometimes the problem solves itself in that the optical element that
the antenna is illuminating necessarily intercepts only a portion of its
field and if a phase centre can be arrived at for only that portion,
what may pertain elsewhere holds little interest. However very often,
the PMSWCH being a case in point, even this more limited objective
is not met and further retreat to a next most satisfactory alternative
becomes necessary.

One is more or less to abandon the chase altogether and adopt
a more application oriented approach in which, with the axis of the
horn, along which any phase centre must be presumed to lie, and
the radio-optical axis having first been made coincident, the horn is
then positioned to maximise the aperture efficiency of the reflector
that produces the final diffraction pattern [3, 4]. The equivalent phase
centre of the horn is then taken as coincident with the optical focus
point and its position in the horn can be fixed as a distance from its
aperture plane. Despite its obvious overall practical merit, doing this
produces an application specific, after the fact result that is not solely
a property of the horn and so may not be of much interest in itself,
knowing the position of any reference mark on the horn serving equally
well to fix its position within the associated radio-optical system.

The root to any defining of phase centre as a property unique to
the horn lies in first determining it in any plane that contains its axis
of symmetry. In any such plane, either component of the radiation
field can be written in the form

E = |V (θ)| ejψ(θ) e
−jkr

r
(3)

The phase of the field at any radius r in a direction θ is then

Ψ(θ) = ψ(θ) − kr (4)

Hence to remain on the same wavefront as contains a point on the axis
of symmetry at radius r, the ray emitted at an angle θ will need to
travel an additional distance δr(θ) chosen so that

ψ(0) − kr = ψ(θ) − kr − kδr(θ) (5)
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i.e.,

δr(θ) =
λ

2π
{ψ(θ) − ψ(0)} (6)
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Figure 2. Phase centre not coincident with origin of coordinates.

Now consider Fig. 2 which shows the assumed situation of a
spherical wave being emitted from a point on the axis of symmetry
not coincident with the origin of coordinates but offset from it by
a distance ∆. Then in terms of the chosen coordinate system, the
equation of the wavefront is

(x + ∆)2 + y2 = R2 (7)

This can be converted to polar coordinates by the transformation
x = ρ cos θ, y = ρ sin θ to give

ρ = −∆ cos θ +
√
R2 − ∆2 sin2 θ (8)

when, subject to being in the radiation field where R >> ∆,

ρ = R− ∆ cos θ (9)

This is essentially to say that the radius vectors to a given point on
the wavefront from the phase centre and the origin of coordinates are
parallel, making the added distance that the ray must travel to reach
the wavefront

δr(θ) = ρ− r = R− ∆ cos θ − r = 2∆ sin2 1
2
θ (10)
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Equating this with the previously determined excess distance then
gives

ψ(θ) − ψ(0) = δψ(θ) =
4π∆
λ

sin2 1
2
θ (11)

Following Rusch and Potter [5], we apply this model to the horn in
question in the plane of interest by determining a best value for ∆ in
a least squares sense as that which minimizes

E2 =
θ0∫
0

[
δψ(θ) − 4π∆

λ
sin2 1

2
θ

]2

dθ (12)

where θ0 bounds the semi-angular range within which phase centre is
to be determined.

The value of ∆ that minimizes E2 can be found by applying
Leibnitz’ Rule [6, p. 454] to determine dE2/d∆ and setting it to zero.
The result is

∆ =
λ

4π

θ0∫
0
δψ(θ) sin2 1

2θdθ

θ0∫
0

sin4 1
2θdθ

(13)

We can test the usefulness of this value of ∆ by calculating
√
E2/θ0

over the chosen angular range, this being the RMS phase error that
results from its use as the supposed phase centre. To be useful the
error must be zero or sufficiently small.

It is to be noted that this procedure weights as equally significant
the phase at all angles within the range of integration, even though the
antenna pattern has a maximum at θ = 0 from which, at least initially,
it falls away with increasing θ. Whether or not values of θ for which
the radiation intensity is small should equally influence choice of best
phase centre is something to consider, even though introduction of any
weighting scheme designed to avoid this would necessarily be somewhat
arbitrary. Often a value of θ0 will suggest itself. For example, if
the horn is acting as source to illuminate a reflector, the semi-angle
subtended by the reflector could be considered an appropriate choice.
In less obvious cases setting θ0 ≈ θ̄3 dB, the average 3-dB beamwidth
(at which angle the lobe width 2θ0 is about twice the beamwidth),
might be considered, (at which angle the radiation intensity will have
fallen by about 12 dB from its maximum).
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4. AN ILLUSTRATIVE EXAMPLE

We will now apply this procedure to the phase information contained
in Eqs. (1) and (2). W0 and W2, and hence their sum and difference,
are complex quantities which, when written in amplitude-phase form,
in the radiation field principal planes lead directly to

δψ(θ) = arg [W0(θ) ∓W2(θ)] − arg [W0(0)] (14)

Implicit in this is the realisation that on boresight where θ = 0,
W2(0) = 0 and so makes no contribution to the phase

Since it will soon emerge that no general result can be presented,
it is most illustrative to continue the discussion with an example. For
this we choose a horn with a semi-angle α = 16.63◦, an aperture
radius A = 80 mm and is driven from a circular waveguide with a
25 mm internal diameter (a = 12.5 mm). The length of the horn
is L = 226 mm and it is assumed to operate at a wavelength of
λ = 36.35 mm (frequency of 8.253 GHz). The principal plane radiation
diagrams of this antenna calculated from Eqs. (1) and (2) are shown
in Fig. 3 wherein the interplay as between the two patterns of the
addition and subtraction of the secondary W2 term with the primary
W0 term is clearly evident.
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Figure 3. Sample horn radiation diagram.

For each of these principal planes, Table 1 shows the distance
inside the horn, measured from its aperture plane, of the best fit,
principal plane phase centres as a function of θ0 together with the
RMS phase error that results from this choice. This shows that in
both cases the phase centre falls within the body of the horn but
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more importantly that it depends on θ0, with the RMS error, though
remaining tolerably small over a wide range of this variable, generally
increasing as θ0 increases. The clear implication of this result is that
even in a specific plane, phase centre position is not a unique property
of the horn but is specific to the application.

Table 1. Best fit phase centre.

E-plane H-plane

θ0 (deg.) Position (mm)
RMS error

(deg)
Position (mm)

RMS error

(deg)

10 160.1 6.53 64.8 3.11

11 168.2 8.01 66.7 3.84

12 177.1 9.57 68.9 4.68

13 186.4 11.11 71.4 5.64

14 195.2 12.49 74.3 6.71

15 203.0 13.56 77.6 7.91

16 208.8 14.17 81.3 9.23

17 212.4 14.35 85.4 10.67

18 213.6 14.22 89.9 12.18

19 212.7 14.09 94.7 13.72

20 210.1 14.42 99.6 15.19

5. COMPARISON WITH PUBLISHED RESULTS

While so far this has been shown only in relation to a specific example,
the result is general and should act to proscribe any possibility of
presenting data on phase centre location as a function of the horn
geometry alone. Interestingly however, such data appears in the
literature. There is a table in Milligan’s book [7] and a graph in the
book edited by Olver et al. [2]. Data used to produce both is claimed
to be based on phase information generated by numerical integration
of the horn aperture field, taken to be that of the TE11 mode together
with a quadratic phase deviation term, exactly as assumed in deriving
Eqs. (1) and (2). However in neither case is anything said about
the actual process of moving from radiation field phase data to phase
centre.

Milligan cites an earlier paper [8] as the source of the data
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contained in his book but, while this contains his universal radiation
patterns, it is silent on the subject of phase centre. He does, however,
also cite a paper by Muehldorf [9], which, while it does not specifically
consider the PMSWCH, does provide a method for translating the
phase information into a phase centre that is applicable to horns in
general. Presumably Milligan has applied this to his raw data and the
result is the table shown in the book.

Muehldorf defines phase centre as the point from which the
radiation field appears to have come. He then assumes that in
any plane containing the horn axis, it can be found as the centre
of curvature of a far field, constant phase surface at its point of
intersection with the axis. This removes any dependence on θ0 but
only at the expense of the additional assumption that the constant
phase surface is perfectly spherical, in the process discarding most of
the phase information save for that in the immediate neighbourhood
of the axis.

In both references [2, 7] the data is given in terms of a normalised
phase centre defined as the distance of the phase centre from the
aperture plane divided by a normalisation parameter R. For this
parameter, Ref. [2] uses the axial length of the cone, the distance
measured along the axis of symmetry from the aperture plane to
the point of intersection of its generators, when in terms of Fig. 1
R = A/tanα, while in [7] the choice is to use the slant length,
measuring along a generator, when R = A/sinα. Obviously for α � 1
there will not be a great difference.

The presentation is in terms of normalised phase centre as a
function of a dimensionless parameter s = A2/2λR which captures
both the horn geometry and the operating condition, in [2] as a graph
and in [7] as a table. Both presentations include within their range the
illustrative example used above. It is therefore interesting to carry out
a critical examination of the consistency of the two sets of published
data and the degree to which they agree with the example results
obtained in this paper.

Initial comparison of the two sets of published data, even at the
grossest level, shows no agreement at all. According to Milligan’s
table [7], for example, the E-plane phase centre always lies further
inside the horn than the H-plane phase centre, whereas with Shafia
and Kishk’s graph [2] the opposite is the case. However it is also to
be observed that in the graph, the normal convention for choice of
dependent and independent variable axes has been reversed. If based
on this observation, one does the comparison on the basis that the
axes have simply been mislabelled, the position changes completely
and the result, even at the level of detail, is considerable agreement. It
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therefore seems safe to assume that this is what has actually occurred.
In effecting a comparison of the published data with that derived

in this paper, there is a clear preference to use the table in which
interpolation by differences is obviously preferable to attempting to
read a small graph where obtaining even two figure accuracy is
problematical. However, whatever the case, one is still left to compare
a single value with a range of values.

Interpolating in the table given by Milligan for the case s = 0.3149,
the example case, we obtain RE = 214.7 mm, RH = 83.8 mm, which
compares fairly favourably with the data obtained in this paper where,
if θ0 is set at 15◦, about the average principal plane beamwidth for
the horn in question, RE = 203.0 mm, RH = 77.6 mm. Using the
procedure outlined in this paper, it is found that the RMS phase
errors that attach to this choice are 13.56◦ for the E-plane and 7.91◦
for the H-plane. This author’s reading of the graph (entered at
s = 0.3149/cos 16.63◦ = 0.3286) gives RE = 195 mm, RH = 88 mm
Since both sets of published have in common omission of any angular
range of applicability, both sets of answers equally must be regarded
as no more than indicative.

6. APPLICATION AS A FEED IN RADIO-OPTICAL
ANTENNA SYSTEMS

Quite apart from the specifics above and however defined, there is
general agreement that the phase centre is different between the two
principal planes. As Milligan [7] points out, the principal plane phase
centres can be expected to be at the extremes of the range that
would be obtained in any plane containing the horn axis, the variation
between the principal planes being elliptical. There is thus no position
at which a PMSWCH can be placed along the optical axis of any
radio-optical antenna system of which it may be the feed that will
not result in some diminution of aperture efficiency at the final beam
forming aperture with consequent loss of gain and reduced cross polar
performance, although these may be tolerated where an adequate-for-
application and markedly cheaper product results.

It is quite clear too that there is a wide difference in the placement
of the principal plane phase centres, making the PMSWCH a highly
astigmatic source. In the light of Eqs. (1) and (2), where as between the
principal planes the complex W2 term is in one case additive and the
other subtractive, this is perhaps not entirely surprising. In attempting
to deal with this matter, Ref. [10] offers the advice that “for horns with
phase centers in the two principal planes located not too close to each
other, satisfactory operation can be obtained by locating the focus at
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a point between the two phase centers such that the maximum phase
deviations in the two planes are approximately the same”.

In this instance, a route to that goal is to observe that were it not
for the W2 term, which, as already pointed out, makes no contribution
on the boresight axis, the two principal plane patterns would otherwise
be the same. To base a compromise on the result obtained using the
W0 term alone and putting up with the consequent partial defocusing
of the part of the field associated with the W2 term therefore suggests
itself. That this compromise is possible is not evident in any solution
that proceeds directly from numerical integration of the aperture field
without prior reduction in terms of this set of functions. When this
is done for the example horn with θ0 = 15◦, the result is to place
the compromise phase centre at z = −135.0 mm (not too different
from the arithmetic mean of the principal plane phase centres, the
compromise recommended in [10] for closely spaced but not exactly
coincident phase centres) with an RMS phase error (based on the W0

term alone) of 0.1932c = 11.07◦.

7. EXPERIMENTAL VALIDATION

Despite the seeming rubberyness of the whole concept of phase centre,
at least as it applies to the PMSWCH, it does have practical utility.
Even if one adopts the more systems oriented approach of attempting
to place the horn at the position that optimises radio-optical system
aperture efficiency, it is of more than passing utility to have a close idea
of where to begin what is necessarily an iterative process. Kildal [3]
has outlined a systematic way of going about this by correction of an
adequately good starting point. This is to be supplied by the means
outlined so far in this paper.

The horn that has been used as an example in the above was
designed and manufactured with a specific application in mind. The
project involved refurbishment of a 6.4 m dish using a nominally
Gregorian radio-optical system, obtained cheaply on the second hand
market and originally configured for Ka-band operation, to receive
circularly polarised, telemetry signals in X-band from a constellation
of earth resources satellites against a background where cost and speed
of readiness for operation were paramount. Details are contained in [11]
and here it suffices to say that the link budget contained sufficient slack
to allow the shortcomings of the PMSWCH as a feed to be tolerated.

As a way of optimising it for its original design application, the
optical elements of the antenna, while remaining figures of revolution,
had been slightly distorted from true conics to best accommodate the
characteristics of the original corrugated horn feed. The result is some
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blurring of the point focus that would otherwise have been the case.
However a ray optical study based on geometric optics principles had
shown that there was an identifiable point of best focus which, with a
point source located there, would produce an acceptable result. The
object then became to match this with a PMSWCH source.

The preceding analysis was used to set a starting point for
experimental optimisation, this consisting of having the system
produce a radiation pattern that most closely approximates that
calculated using a point source of the same average beamwidth as
the horn and located at the point of best focus. The degree to which
this has been achieved can be gauged from Fig. 4 which compares
the theoretically determined best result with that obtained from the
dish with the horn located at its experimentally determined optimum
position. Because no test range was available that could contain so
large an antenna for measurement purposes, a satellite source was used
to do this, details being given in [11].
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Figure 4. Theoretically and experimentally determined radiation
diagrams for 6.4 m dish.

The optimum result was obtained with the horn set at a position
that measured from its aperture plane would place its best fit phase
centre on the axis of symmetry at z = −139 mm. Because the elliptical
sub-reflector that the horn directly illuminated intercepted most of its
main lobe, it was decided to determine the starting phase centre by
setting θ0 = θ̄3 dB, in this case 15◦. Results for this are given above. A
comparison of these with the experimentally determined result shows
a discrepancy of 4 mm for the case where the W0 derived result is
used and 1.3 mm for the case where the mean of the best fit principal
plane results is used, in both cases small fractions of a wavelength
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(λ = 36.35 mm).
A radio-optical system with a true set of conic surfaces and in

consequence an unambiguous point focus would hold the potential
for debate free validation, a property that, as noted, can only be
approximated by a system that comes already compromised to suit
its original application. However it is contended that despite the less
than ideal circumstances in which they were determined, these results,
a generally good reproduction of a pre-computed polar diagram, lend
strong weight to the validity of the method that forms the basis of the
paper.

8. CONCLUSION

In this paper we have studied the question of the phase centre of
a pure mode, smooth wall, conical horn. Whichever of the several
possible definitions of the term to be found in the literature is used,
it has been shown that in planes containing the axis of symmetry
different results are obtained in each plane, with the principal plane
values constituting the extremes, and that under most definitions of
the term, in any plane the PMSWCH does not have a phase centre
that is a property of the horn alone, but is application dependent.
Even so, it has been shown that a theoretically determined value is
useful in setting a starting point for optimisation by maximisation of
secondary aperture efficiency. A comparison of the results determined
here with others published previously in the literature has highlighted
a number of shortcomings, including that some most likely contain
labelling errors.

The drawbacks that have led to the virtual discarding of the
PMSWCH as a primary source element in radio-optical systems are
not removed by anything contained in this paper. However, it must be
remarked that the worth of any engineering solution is to be judged
in terms of its economy in relation to the need that it is intended to
satisfy, sometimes forgotten in a technically driven search for the very
best. The paper illustrates by way of practical example that, when
there are occasions where these shortcomings can be lived with, the
cheapness and ease of construction of the plain conical horn makes it
an attractive solution worth keeping in mind.
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