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Abstract—The paper describes the propagation of a thin laser beam
which passes through a hot turbulent jet, perpendicularly to the flow
direction, using geometrical optics approximation. From the modelling
of the random propagation direction of the laser beam along its whole
path, the diffusion coefficient of the turbulent jet is determined by
means of a shape optimization technique in which a genetic algorithm
is used. The results obtained from the GA are then improved by the
Golden Section method.

1. INTRODUCTION

The problem of laser beam propagation through turbulent jets is
a very complex phenomenon which in general, includes refractions
effects, diffractions effects, polarisation and backscattering effects, of
the transmitted light wave. Because of a lot of modern applications
of that problem in laser based-systems, many theoretical studies [1–
3] and experimental investigations [4–7] of wave propagation through
random media have been done in recent years.

In this paper, we are concerned with a thin laser beam, having
initial diameter a = 0.8 mm, incident wavelength λ0 = 6328 A, which
propagates through a hot turbulent jet, created from a rectangular
nozzle, according to the experimental conditions already described
by Pemha, Gay and Tailland in [8], and by Ngo Nyobe and Pemha
in [9]. The mean propagation direction is defined along the x
axis, perpendicularly to the flow direction, with a mean propagation
distance X = 200 mm. Along the whole path of the laser beam, the
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mean temperature, the mean speed of the flow, and the rms of the
temperature fluctuations remain constant and are respectively equal
to 50◦C, 8 m/s and 2.75◦C, except in a short area at both borders
of the airstream. The thermic turbulence in the hot jet induces
random fluctuations of the refractive index which causes random
deflections of the laser beam propagation direction, generates random
phase modulations of the laser beam wavefront and creates random
fluctuations of the light wave amplitude.

The problem of laser beam propagation through turbulent jets
is equivalent to the geometrical walk process of the laser beam if
refraction effects are more important than diffraction effects, that is,
if the geometrical optics approximation is valid. It is well-known that
[1–3], in that case, the following four conditions are required:

- The incident wavelength λ0 of the optical radiation must be
very small, compared to the inner scale l0 of the turbulent
inhomogeneities in the hot jet.

- The whole path distance X traversed by the laser beam must
be very great, compared to the outer scale L0 of the turbulent
inhomogeneities.

- The size of the first Fresnel zone
√
λ0X must be smaller than the

inner scale l0.
- The laser beam intensity fluctuations must be neglected.

It is proved [9] that the above conditions are rigorously satisfied in the
jet considered. Then, the present work is done using the geometrical
optics approximation, and this paper is devoted to the study of the
laser beam propagation direction through the turbulent airstream.

If τ represents the unit vector tangent to the laser ray trajectory,
s is the arc length of the laser ray curve, the well-known ray equation
leads to the following form [1–3, 8]:

d(nτ )
ds

= gradµ (1)

where µ denotes the fluctuations of the refractive index n.
By integrating equation (1) along the length σ of a small path

traversed by the ray and supposed to be large compared to the
correlation distance of the refractive index fluctuations, we obtain:∫ σ

0
gradµds = n2τ 2 − n1τ 1 (2)

Let ε be the deflection angle of the laser ray from its initial
direction after going the distance σ. By taking the square of (2),
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and using the fact that the deflection of the ray along the path σ is
small, it can be shown [1, 8] that the variance of ε is related to σ by
the following equation:

ε2 = 4Dµσ/n2 (3)

where n2 is the mean value of the refractive index, Dµ is a quantity
called the diffusion coefficient of the jet and defined as [1, 8, 9]:

Dµ = −µ
2

2

∫ ∞

0
∆Rµ(r, 0, 0)dr (4)

Rµ being the correlation coefficient of the refractive index fluctuations
and ∆ the Laplacian operator.

In the previous works [8] done under the same experimental
conditions, the experimental value of the diffusion coefficient for the
turbulent jet considered has been deduced (Dµ = 2.20×10−9 m−1) from
the measurements of Gagnaire and Tailland [10], which were obtained
by means of the well-known cold wire anemometer technique [11].
Moreover, by using the propagation of a thin laser beam through the
hot turbulent jet, Pemha, Gay, and Tailland [8] have obtained the value
Dµ = 2.98 × 10−9 m−1. This value presents a great difference (35%)
with respect to the experimental value deduced from [10].

The purpose of the present work is to improve the technique of
measurement of the diffusion coefficient used in [8], by means of genetic
algorithms.

2. THE MARKOV PROCESS MODEL AND THE
MODELLING OF THE LASER BEAM PROPAGATION
DIRECTION

At any position reached by the laser beam during its random
propagation, its direction can be characterized by φ and θ which
respectively represents the polar and azimuthal angles. We assume
that the propagation of the laser beam in a turbulent jet can be
regarded as a continuous Markov process in which the role of the
time is played by the path length σ traversed by the laser beam. The
beam angle deflection being small, we can approximate σ by the x
coordinate along the initial incident direction of the beam. Therefore,
the probability P (φ, θ, σ) for the laser beam to have the direction
defined by the polar and azimuthal angles φ and θ after going a distance
σ, can be approximated by P (φ, θ, x) and is governed by the second
Kolmogorov equation [12, 13] also called the Einstein-Fokker-Planck
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Kolmogorov (EFPK) equation [1, 8] :

∂P

∂x
=

Dµ

sin θ
∂

∂θ

(
sin θ

∂P

∂θ

)
+

Dµ

sin2 θ

∂2P

∂φ2
(5)

with the initial condition:

P (φ, θ, x = 0) = δ(φ)δ(θ − π/2) (6)

where δ denotes the Dirac distribution, φ = 0 and θ = π/2 are the
angles of the beam direction before entering into the jet.

In the previous works done by Pemha, Gay and Tailland [8], the
Equation (5) was solved by using a numerical method model in which
the angular discretization steps are supposed to be constant. This
assumption leads to the conclusion that the laser beam propagation
direction remains constant and depends only on two points which are
the entering point of the laser beam, and the beam impact position at
the outlet observation plane x = X. Although this hypothesis gives
good results about the order of magnitude of the jet diffusion coefficient
and that of the outer scale L0 of the turbulent inhomogeneities, it does
not hold in reality and is in contradiction with the geometrical optics
approximation. In order to take into account the fact that the laser
beam propagation direction is a turbulent function of the propagation
distance x, the polar and azimuthal angles of the beam direction are
defined in terms of the Fourier series expansions which depend on
the propagation distance. Then, using the initial incident direction
(φ = 0, θ = π/2) of the laser beam and its final direction (φX(x1, x2),
θX(x1, x2)), that is, its direction when it reaches the outlet plane, we
propose in this paper, the following relations which characterize the
modelling of the laser beam direction of propagation:

φ(x1, x2, x) = φX(x1, x2)[
1−α

N∑
n=0

(
an sin

(
2nπ

x

X

)
+bn cos

(
2nπ

x

X

))]
(7a)

θ(x1, x2, x) =
π

2
+

(
θX(x1, x2) −

π

2

)
[
1−α

N∑
n=0

(
cn sin

(
2nπ

x

X

)
+dn cos

(
2nπ

x

X

))]
(7b)

A method of measurement which is already described in [8] enables us
to determine the values of the final directions (φX(x1, x2), θX(x1, x2))
and those results are used in the present work. In order to control
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the order of magnitude of the two Fourier series, such that the values
of φ(x1, x2, x) and θ(x1, x2, x) remain reasonable for any distance of
propagation x, we have introduced the parameter α in the modelling
relations (7).

Those relations must verify the final boundary conditions on the
outlet plane x = X, written as follows:

φ(x1, x2, x = X) = φX(x1, x2) (8a)
θ(x1, x2, x = X) = θX(x1, x2) (8b)

The above conditions lead to the following constraints for the spectral
coefficients (an), (bn), (cn) and (dn):

N∑
n=0

bn cos(2nπ) =
N∑

n=0

dn cos(2nπ) = 0 (9)

For solving Equation (5) with the initial conditions (6), we have
applied a numerical explicit discretization scheme with alternating
directions and used the Fourier spectral model mentioned above. Thus,
we have determined the probabilities P (x1, x2, x, Dµ) of the beam
impact positions on any plane (x1, x2) placed at a distance x from the
beam entering point. The above numerical scheme enables to calculate
the probabilities P (x1, x2, x = X, Dµ) which correspond to the outlet
plane x = X. In addition, the values W (x1, x2) of those probabilities
have already been measured by our team, using an experimental set
up described in [8, 9].

3. THE GENETIC ALGORITHM APPROACH

By adjusting our numerical solution P (x1, x2, X, Dµ) to agree with
the experimental results W (x1, x2), a cost function J is defined as :

J =
∫∫

[P (x1, x2, x = X, Dµ) −W (x1, x2)]
2 dx1dx2

A shape optimization with genetic algorithms is then proposed
and enables to calculate the diffusion coefficient of the jet, defined as
the global minimum of the above cost function. The genetic algorithm
approach is recommended for minimizing J because the cost function J
depends on a lot of parameters which are of different types (α, diffusion
coefficient and Fourier spectral coefficients), and are related to J by
an unknown link in which differentiability can not be assumed.

Genetic algorithms are a class of very powerful search methods
which are based on stochastic and non deterministic approach and
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are widely used for non-differentiable function minimizations, that is,
for numerical optimization problems in which gradient-based methods
are failed. Their foundation is inspired by the functioning of natural
systems, according to Darwin’s theory on evolution, which states that
the most fit members in a population have higher chances of successful
reproduction, that is, higher chances of surviving [14–18]. A genetic
algorithm works with the same number of individuals which are coded
as strings of genes, having the same number of bits; each individual
represents a set of the design variables, which allows the association of
different types of variables.

If the optimization technique in this paper needs N Fourier
spectral coefficients for each set of variables (an), (bn), (cn), (dn), the
design variables are defined as the following array: ((an), (bn), (cn),
(dn), α, Dµ) constituted by a vector of 4N + 2 real parameters. For
each parameter, we have used a binary code based on a parameter
approximation scheme which uses the upper (ru) and lower (rl) values
of each parameter, and defines the following set of discretized values:
ri = rl + i(∆r) with: i = 0, . . . , Nr and ∆r = (ru − rl)/Nr. So,
there exists a unique correspondence between each value ri of a given
parameter r and the integer i such that coding ri means coding i.

A simple genetic algorithm is composed of the following six
operations [14–18]: Initialization, evaluation, selection or reproduction,
crossover, mutation, construction of a new generation. Those
operations can be detailed as follows:

1) Initialization: The population of the first generation is randomly
initialized with a constant number of individuals, each individual
being represented by its string of genes.

2) Evaluation: the fitness value of every individual is evaluated. This
fitness function F must remain positive and is constructed from
the cost function J such that the minimization of J is equivalent
to the maximization of F .

3) Selection or reproduction: individual strings are selected
according to their fitness values, that is, the probability for a string
of genes to be reproduced is all the more great as the fitness value
of the string is high. This operation does not change the number
of individuals constituting the population.

4) Crossover: The crossover process is applied on individuals who
are selected or reproduced. It proceeds in two steps. First, pairs
of individuals in the population are randomly chosen for mating
at a crossover rate. Second, each pair of those strings undergoes
partial exchange of their string at a random crossing site and news
individuals called “children” are obtained.
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5) Mutation: It plays a secondary role in the simple genetic algorithm
and is defined as the bit change which can randomly occur in a
given string at a mutation rate. This rate must be very small,
compared to the crossover rate.

6) New generation: after crossover and mutation operations, a new
population is then formed and undergoes the step 2. Before
performing this iteration, an elitist strategy is applied and ensures
that the best individual is always selected.
There exist various criteria for ending the work of the genetic

algorithm [14–18]. In this paper, we have used the criterion
which consists to perform the genetic algorithm during a number of
generations arbitrarily defined. Usually, one hope that the genetic
algorithm will converge before reaching the final generation and that
the best individual at the final generation could constitute the solution
of the problem, that is, the global minimum of the cost function.

4. RESULTS

The number of discretization steps along the x axis is chosen to be equal
to the number N of Fourier spectral coefficients. Initially, this number
is assumed to be very great (N = 500). The genetic algorithm is
then performed for 300 generations for a population of 100 individuals,
with crossover rate = 0.70, mutation rate = 0.02. In Figure 1(a), is
presented the convergence process of the genetic algorithm in which it
is shown that the optimal value obtained for the diffusion coefficient is:
Dµ = 2.298142717497557 × 10−9 m−1, that is, Dµ = 2.30 × 10−9 m−1.
Figure 1(b) presents the successive values of the minimum of the cost
function J , plotted as function of the generation number, for the
following values of the GA parameters: probability of crossover = 0.60,
probability of mutation = 0.03, population size = 50. By taking another
group of those parameters such that their values verify Goldberg’s
recommendations [15] (for example: probability of crossover = 0.60,
probability of mutation = 0.04, population size = 75), the behavior of
the above figures does not considerably change and all the curves we
have obtained are nearly identical.

After having obtained the above result, the Fourier spectral
coefficients and the parameter α are remained constant and equal to
their optimal values, and the genetic algorithm is performed for various
values of the number of discretization steps. The convergence tests are
thus done in order to decide whether the optimal value, derived from
the genetic algorithm, could be accepted or not. In Figure 2, the
values of the optimal diffusion coefficient thus obtained are plotted as
function of the number of discretization steps. That convergence curve
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Figure 1. Convergence process of the genetic algorithm: (a) values of
the optimal diffusion coefficient as function of the generation number,
(b) values of the minimum of the cost function as function of the
generation number.
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Figure 2. Optimal values of the diffusion coefficient as function of
number of discretization steps.

is compared to the analogous curved obtained in [8]. Hence we have
found that the total number 4 × 75 parameters (that is N = 75) for
the complete array of Fourier coefficients are sufficient for obtaining
the convergence of the Fourier series expansion and the stability of our
numerical schemes.

The number of discretization steps being equal to 75, and the
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Figure 3. Variations of J as function of Dµ in the neighbouring of its
minimum. Comparison with the results obtained in [8].

Fourier spectral coefficients and the parameter α remaining equal to
their optimal values, the result derived from the genetic algorithm
is improved by applying the golden section algorithm on the cost
function J , which depends only on the parameter Dµ in that case.
The final global minimum for the cost function is then obtained:
Dµ = 2.275235449856795 × 10−9 m−1, that is, Dµ = 2.27 × 10−9 m−1.
This value corresponds to a minimum of J which is smaller than the
previous minimum of J obtained in [8]. In Figure 3, are presented two
curves which enable to compare the variations of the cost function J
near its minimum with the results of J obtained in [8].

5. CONCLUSION

Genetic Algorithms and Turbulence are two interesting topics
which have already been coupled in previous works, notably for
solving applied optimization problems related to the solidification
of thermosolutal flows, as those encountered in metallurgy and
manufacturing processes [19–23].

This paper describes the possibility of connecting that coupling
with optical diagnostic techniques used for experiments in turbulent
flows.

By using a shape optimization technique with genetic algorithms
and laser beam propagation, we have determined the value of the
diffusion coefficient of a hot turbulent jet (Dµ = 2.27×10−9 m−1). The
method of measurement that we have described in this paper improves
the optical technique previously used in [8], where the value derived is:
Dµ = 2.98 × 10−9 m−1.
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The validity of our method can be satisfactorily proved because
our result is nearly equal to the experimental value obtained from [10]
by means of the cold wire anemometer technique, that is, Dµ =
2.20 × 10−9 m−1.
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