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Abstract—A full wave spectral domain method of moment along
with reciprocity theorem analysis of finite phased array of aperture
coupled circular microstrip patch antennas is presented. Both the
electric surface currents on the patches and the equivalent magnetic
current on the apertures are considered. Results of reflection coefficient
magnitude, active input impedance, active element gain, efficiency and
pattern are provided for different array size and element separations.
By optimizing the parameters of the array, a better scan performance
can be achieved. Furthermore, a comparison is made between array of
rectangular and circular patches, with equal patch surface area, and
it is shown that the array of circular patches provide a better scan
performance than the array of rectangular patches.

1. INTRODUCTION

Due to their many attractive features, printed circuit phased array
antennas have received a great deal of attention in the past few
years. One of the techniques of feeding such printed circuit antennas
is through apertures between the feed line and the patch antennas.
This feeding configuration provides many advantages compared to
the conventional feeding techniques such as isolating spurious feed
radiation by use of a ground plane and allows active devices to be
integrated on the feed structure.
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Review of the literature shows that there has been a number of
published papers on the subject of application of the phased array
antennas [1–4], general analysis of phased array [5–8] and analysis of
printed phased arrays such as probe fed dipole and rectangular patch
antenna in an infinite and finite array format [9–13]. Aperture coupled
fed infinite phased array of rectangular patches [14] and finite phased
array of stacked circular patches [15] has also been analyzed. In [15]
in order to evaluate the characteristics of aperture coupled microstrip
antennas in a finite array and derive the moment-method solutions
for the unknown current distributions on the patches and slots, the
reciprocity theorem and the spectral domain Green’s functions for
a dielectric slab are used. But this work is pertained to a stacked
microstrip patch and neither Green’s functions nor results are suitable
for a single layer structure. Furthermore, no comparison is made
between rectangular and circular patches in a finite array environment.

To the knowledge of the authors no full wave analysis of the
aperture coupled finite phased array of rectangular or circular patch
antennas is in evidence. It is well known that the infinite array
approximation, models the central element of a large but finite array
quite well but it is difficult to predict the behavior of the antenna
elements positioned near the edges.

In this paper, we present a method of moment analysis of
the aperture coupled finite phased array of circular and rectangular
microstrip patch antennas in the spectral domain. This uses the exact
Green’s functions for the structure and takes into account the surface
wave effects on both the feed and the patch dielectric substrates.
Appropriate basis functions for the current distribution on the patch
are considered. The method uses the reciprocity theorem to analyze
the coupling of the microstrip feed line to the narrow rectangular
slot in the ground plane. Once the current distribution on the
circular patch is found, the active Input impedance, active reflection
coefficient magnitude, efficiency and active element gain and active
element pattern can be obtained. Upon comparison between arrays of
rectangular patches to arrays of circular patches it will be shown that
for equal surface area of the patches and optimized parameters, the
circular patch provides a better scanning performance.

2. THEORY

The geometry of a finite phased array of aperture coupled circular
microstrip patch antenna is shown in Fig. 1. The patches are spaced
uniformly (and not equally) in the x and y directions. The spectral
domain analysis of the finite array is basically similar to that of the
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Figure 1. Geometry of a finite phased array of aperture coupled
circular microstrip patch antennas.

infinite array formulated in [14], where details of the formulation can
be found. For the purpose of completeness the basic analysis procedure
for the finite array is outlined below.

The analysis can be divided into two separate parts. The first
part is above the ground plane between the slots and the patches and
the second part is under ground plane between the feed lines and the
slots.

For the first part, the electric field integral equation, EFIE,
(based on boundary condition on the perfectly conducting patches,
E

tan
scat(Js) = −E

tan
inc(M s)) for the surface current on the patches is

written in terms of the appropriate Green’s functions. This is then
solved by the Galerkin method of moment in the spectral domain. In
the method of moment, the unknown current on the patches in x and y
directions are expanded by a series of basis functions. By substituting
these basis functions in the EFIE and taking the inner product of the
resultant equation with testing functions (similar to basis functions)
the final equation would of the form,

N∑
g=1

ZhgIg = Vh (h = 1, 2, . . . , N) (1)
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One may express this equation in a matrix operator form as,


Z11 xx . . . Z1N xx Z11 xy . . . Z1N xy
...

...
...

...
ZN1 xx . . . ZNN xx ZN1 xy . . . ZNN xy

Z11 yx . . . Z1N yx Z11 yy . . . Z1N yy
...

...
...

...
ZN1 yx . . . ZNN yx ZN1 yy . . . ZNN yy



·




I1x
...

INx

I1y
...

INy



=




V1 xy
...

VN xy

V1 yy
...

VN yy



·[Ip]

(2)

in which

Ip
i = ejk0(kau+lbv), u = sin θ · cosφ and v = sin θ · sinφ

and

Zmn xx =
1

4π2

∫ ∞∫
−∞

J̃∗
mx · G̃EJ

xx · J̃nx · ejkySy · βdαdβ

Zmn xy =
1

4π2

∫ ∞∫
−∞

J̃∗
mx · G̃EJ

xy · J̃ny · ejkySy · βdαdβ

Zmn xx =
1

4π2

∫ ∞∫
−∞

J̃∗
my · G̃EJ

yx · J̃nx · ejkySy · βdαdβ

Zmn yy =
1

4π2

∫ ∞∫
−∞

J̃∗
my · G̃EJ

yy · J̃ny · ejkySy · βdαdβ

Vm xy = − 1
4π2

∫ ∞∫
−∞

J̃∗
mx · G̃EM

xy · M̃sy · βdαdβ

Vm yy = − 1
4π2

∫ ∞∫
−∞

J̃∗
my · G̃EM

yy · M̃sy · βdαdβ

(3)

where J̃g is the Fourier Transform of the gth basis or testing functions.
Ig is the complex unknown vector current coefficient, G̃ is the dyadic
Green’s function, M̃sy is the equivalent magnetic current on the
slots and (∼) represent Fourier Transform and (*) denotes complex
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conjugate. The elements of the Greens functions required are given in
the appendix.

In the above analysis for the phased array antenna, each of
the array elements is assumed to be fed (scanned) by a source of
ejk0(mau+nbv). The basis functions on each patch suitable for our
analysis are similar to those in [14] for rectangular patches and [16]
for circular patches and are presented again in the appendix for
convenience. The basis functions for the circular patches correspond
to the TMmn modes of a circular cavity and are suitable for wave
functions with even symmetry. For the narrow slot, the equivalent
magnetic current is approximated with a single piece - wise sinusoidal
mode,

M̃sy = ẽa
x =

sin(kxWs/2)
kxWs/2

· 2ke[cos(kyLs/2) − cos(keLs/2)]
sin(keLs/2) ·

(
k2

e − k2
y

) (4)

where ke is the effective wave number.
For the second part of the analysis, coupling between the feed lines

and slots can be applied by taking the advantage of the reciprocity
theorem [14] in which the couplings between feed lines are neglected.
An equivalent circuit for each of the aperture coupled patch antennas
can then be considered, as shown in Fig. 2. In this circuit, the series
impedance Z is given by,

Z = Zc ·
∆v2

Y e + Y a
(5)

where Zc is the characteristic impedance of the microstrip line, the
denominator Y e + Y a represents the aperture admittance and ∆v is a
modal voltage for the field over the aperture due to the discontinuity
of the slot. The latter is:

∆v=
∫

Sa

ea
x(x, y)hy(x, y)ds=

1√
zc

∞∫
−∞

F̃u(ky)G̃HJ
yx (−ke, ky)F̃p(ky)dky (6)

Figure 2. The equivalent circuit of aperture coupled patch antenna
as seen by the microstrip feed line.
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where sa is the surface of the aperture and F̃u and F̃p are the spectral
domain expressions for the transverse and piecewise sinusoidal current
distributions on the feed line and aperture, respectively [14]. Ye, is
the self admittance of the slot, representing the reaction between slot
electric field and the magnetic field radiated by the aperture towards
the feed line (f) and patch antenna (a) and is expressed as:

Y e =
∫
sa

ea
x(x, y)HM

y ds

=
1
4π

∫∫
−∞

F̃ 2
u (kx)(G̃HM(f)

yy (kx, ky) + G̃HM(a)
yy (kx, ky))F̃ 2

p (ky)dkxdky

(7)

and Y a represents the reaction between the slot electric field and the
magnetic field scattered due to the current on the patch and can be
expressed as,

Y a =
∫
sa

ea
x(x, y)Hyds = [V ]t[Z]−1[V ] (8)

Upon substitution in Equation (5), the series impedance Z of
Fig. 2 is obtained. Aperture coupled patch antenna is usually tuned
with an open-circuited stub of Microstrip line. If the stub length is
Lstub, using transmission line theory, the input impedance referenced
to the aperture would be,

Zin(θ, ϕ) = Z − jZc · cot(βLstub) (9)

where β is the propagation constant of the feed line. More accurate
results can be obtained by adding a length extension to Lstub to account
for fringing fields at the end of the open stub. Then the active reflection
coefficient can be obtained from,

R(θ, φ) =
Zin(θ, φ) − Zin(0, 0)
Zin(θ, φ) + Z∗

in(0, 0)
(10)

And active element gain [15] as,

gr(θ, ϕ) =
(
4πab/λ2

0

)
cos(θ)

[
1 − |R|2

]
(11)

3. RESULTS

The above theory was implemented in a software program for
calculating the input impedance, reflection coefficient, efficiency, gain
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and pattern of the finite array of circular and rectangular patch
antennas. To evaluate the integrals, the cartesian coordinate is first
converted into polar coordinate thus converting the double infinite
integrals into a finite one [0-2π] and an infinite one [0-∞). Simpson
rule integration is used for the finite integral and Gauss quadrature is
used for the infinite one. An upper limit of 400ko for the ∞ integral
was noticed to provide convergence. Singularity at surface wave modes
is also taken into account through residua theory.

In all of the cases considered here, calculations were made with
1 basis functions on both of the circular and rectangular patches for
each (ρ, ϕ) or (x, y) directions and the edge condition was applied to
transverse distribution for the aperture and the microstrip feed line.
Increase in the number of basis functions, increases the computational
time and was shown to have little effects. Numerical convergence tests
showed that basis functions corresponding to cavity modes with odd
symmetry the so called “Orthogonal set” have very little effects.

Figure 3 shows the magnitude of the reflection coefficient
variations versus scanning angle theta in the E-plane, for the central
element of two 7 × 7 arrays, one with circular patches and the other
with rectangular patches. In this figure the surface area of the circular
and rectangular patches are made equal.

Figure 3. Reflection coefficient magnitude for an array of 7 × 7
rectangular and 7 × 7 circular patches with: εra = 2.55, da = 0.04λ0,
εrf = 12.8, df = 0.06λ0, Ls = 0.1λ0, Ws = 0.01λ0, Wf = 0.07λ0,
LStub = 0.0, a = b = 0.5λ0, Lp = 0.3λ0, Wp = 0.3λ0, rp = 0.16λ0. (—)
one and (·−) two basis functions.
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Also shown on this figure, is the effect of increase in the number of
basis functions. It is obvious from this result that even with one basis
function results converge for both the rectangular and the circular
patches. Furthermore, from Fig. 3, the reflection coefficient of the
array of circular patches remains less than the array of rectangular
patches over the entire scanning angle. This means that array of
circular patches has a better performance compared to an array of
rectangular patches under the equal patch surface area condition. In
the following, the reflection coefficient, efficiency, gain and radiation
pattern of the array of aperture coupled circular patches is provided.

The results provided in this paper are pertaining to a series of
optimal dimensions and situations which are mainly obtained by tuning
the patch sizes and substrate parameters. All the results could be
improved by more accurate adjustments.

Figures 4 and 5 shows the reflection coefficient magnitude of the
centre element with in an array of circular patches of different size
for scanning in the E-plane and H-plane, respectively. Increasing the
array size could affect the reflection coefficient by increasing the mutual
coupling effects. So the array performance may decrease. As may be
seen from these two figures, the blind spot is not a certain problem
in the finite arrays; contrarily this is a serious problem in the infinite

Figure 4. Reflection coefficient magnitude for an array of circular
patches with εra = 2.55, da = 0.06λ0, εrf = 12.8, df = 0.02λ0,
Ls = 0.115λ0, Ws = 0.01λ0, Wf = 0.02λ0, LStub = 0.075, rp = 0.13λ0,
a = b = 0.4λ0 and with array size of: (− − −) 7 × 7, (·−) 9 × 9 and
(· · · ) 13 × 13 in the E-plane.
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Figure 5. Reflection coefficient magnitude for an array of circular
patches with εra = 2.55, da = 0.06λ0, εrf = 12.8, df = 0.02λ0,
Ls = 0.115λ0, Ws = 0.01λ0, Wf = 0.02λ0, LStub = 0.075, rp = 0.13λ0,
a = b = 0.4λ0 and with array size of: (− − −) 7 × 7, (·−) 9 × 9 and
(· · · ) 13 × 13 in the H-plane.

arrays structure.
In Fig. 6, the efficiency of an array with circular patches is given

against scanning angle for the center element of the array as a function
of array element separation. It can be seen that by increasing the
space between the elements beyond 0.5λ0, the efficiency decreases
dramatically. Similar to Fig. 6, efficiency can be obtained for array
scanning in the H-plane. It can be shown that in such a case, efficiency
varies between 90–100% for the entire scan range and for various
element separations.

For the circular array, Fig. 7 shows the efficiency of the centre
element within array of different size. It is clear from this figure that
efficiency improves as the array size increases and this is a well known
method of increasing the efficiency of single antennas. In the H-plane,
the efficiency would remain between 90–100% at the entire scan range;
as such it is not drawn here.

The active element gain of the central element of an array with
circular patches as a function of array size in the E-plane is shown in
Fig. 8. It is clear from this drawing that by increasing the array size,
the gain would rapidly boost and this is a common benefit of almost
every array.

Figure 9 shows the normalized radiation pattern of the central
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Figure 6. Efficiency for a 9×9 array of circular patches with different
patch spacing: εra = 2.55, da = 0.06λ0, εrf = 2.55, df = 0.05λ0,
Ls = 0.115λ0, Ws = 0.01λ0, Wf = 0.17λ0, LStub = 0.075, rp = 0.145λ0

for: (—) a = b = 0.4λ0, (−−−) a = b = 0.5λ0 and (·−) a = b = 0.6λ0

in the E-plane.

Figure 7. Efficiency for the centre element of an array of circular
patches with εra = 2.55, da = 0.06λ0, εrf = 12.8, df = 0.02λ0, Ls =
0.115λ0, Ws = 0.01λ0, Wf = 0.02λ0, LStub = 0.075, rp = 0.26/2λ0,
a = b = 0.4λ0 and with array size of: (—) 1 × 1, (− − −) 7 × 7, (·−)
9 × 9 and (· · · ) 13 × 13 in the E-plane.
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Figure 8. Active element gain for an array of circular patches with
εra = 2.55, da = 0.06λ0, εrf = 12.8, df = 0.02λ0, Ls = 0.115λ0, Ws =
0.01λ0, Wf = 0.02λ0, LStub = 0.075, rp = 0.26/2λ0, a = b = 0.4λ0

and with array size of: (—) 1× 1, (−−−) 7× 7 and (·−) 9× 9 in the
E-plane.

Figure 9. Radiation pattern of a (a) 7 × 7 and (b) 9 × 9 array of
circular patches with εra = 2.55, da = 0.06λ0, εrf = 12.8, df = 0.02λ0,
Ls = 0.115λ0, Ws = 0.01λ0, Wf = 0.02λ0, LStub = 0.075, rp = 0.13λ0,
a = b = 0.4λ0 in the (—) E-plane and (·−) H-plane.
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element of a 7 × 7 and a 9 × 9 array of circular patches in both the
E and H-planes. Once more here, same pattern is achievable for the
rectangular patches. Pattern of a 9 × 9 array is evidently narrower
than a 7 × 7 array which means more directivity and more gain.

4. CONCLUSION

A spectral domain analysis of finite phased array of aperture coupled
circular patch antennas has been presented. Results for active input
impedance, reflection coefficient magnitude, efficiency, active element
gain, and pattern are provided. The effect of array size, element
separation and patch dimension on the results has been given both
in the E and H-planes. From the results obtained, based on equal
patch surface area, it is noted that circular patches provide a better
scan performance as compared to the rectangular patches.
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APPENDIX A.

In the analysis, the required Green’s functions are

GEJ
xx =

jz0

4π2k0
·
[
(k2

xk2 cos k1d+jk2
xk1 sin k1d)·sin k1d

Te · Tm
− k2

0 sin k1d

Te

]

GEJ
xy = GEJ

yx =
jz0

4π2k0
·
[
kxky sin k1d

TeTm
(k2 cos k1d + jk1 sin k1d)

]

GEJ
yy =

jz0

4π2k0
·
[

(k2
yk2 cos k1d+jk2

yk1 sin k1d)·sin k1d

Te · Tm
− k2

0 sin k1d

Te

]

GEM
xy = −GHJ

yx =
−jk2

x(εr − 1) sin k1d

4π2TeTm
+

k1

4π2Te

GEM
yy = −GHJ

yy =
−jkxky(εr − 1) sin k1d

4π2 · TeTm

G̃HM
yy =

j

k0z0

[
j(γ1 cos(γ1da)+jγ2εr sin(γ1da))(εrk

2
0−k2

y)
γ1Tm

−
jk2

yγ1(εr−1)
TeTm

]
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where,

α = arctan
(
ky

kx

)
β =

√
k2

x + k2
y

Tm = εrk2 cos k1d + jk1 sin k1d Te = k1 cos k1d + jk2 sin k1d

The basis functions for the circular patches in the spectral domain are

J̃ i(kx, ky) = 2πrpj
−m+1Jm(βmnrp){

x̂

[
cosα cosmα

β2
mn

β2
mn − β2

J ′
m(βrp) + m sinα sinmα

Jm(βrp)
βrp

]

+ ŷ

[
sinα cosmα

β2
mn

β2
mn−β2

J ′
m(βrp) −m cosα sinmα

Jm(βrp)
βrp

]}

and for the rectangular patches it is expressed as,

J̃ i(kx, ky) = x̂ · 2ke(cos(kxL/2)−cos(keL/2)−cos(keL/2))
sin(keL/2) · (k2

e − k2
x)

· sin(kyW/2)
kyW/2

where L and W are the patch length and width respectively.
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