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Abstract—In this paper, the radar target recognition is given by
projected features of frequency-diversity RCS (radar cross section).
The frequency diversity means signals are collected by sweeping
the frequency of the incident illumination. Initially, the frequency-
diversity RCS data from targets are collected and projected onto
the PCA (principal components analysis) space. The elementary
recognition of targets is efficiently performed on the PCA space.
To achieve well separate recognition of targets, the features of the
PCA space are further projected onto the LDA (linear discriminant
algorithm) space. Simulation results show that accurate results of
radar target recognition can be obtained by the proposed frequency-
diversity scheme. In addition, the proposed frequency-diversity scheme
has good ability to tolerate noise effects in radar target recognition.

1. INTRODUCTION

Radar target recognition means to identify the classes of targets
by using different types of features. The SAR (synthetic aperture
radar) images of targets are good features for radar target recognition.
However, it is not easy to obtain such features. In general, the
RCS data are easy to obtain and then become good candidates
for radar target recognition. In [1, 2], we have successfully utilized
angular-diversity RCS (radar cross section) data as the features to
identify radar targets. The angular-diversity technique means signals
are collected by sweeping the angles in space. Although angular-
diversity RCS data theoretically give accurate recognition results in
our past studies of [1, 2], they are impractical. Unlike the angular
diversity, the frequency-diversity (or frequency-swept) technique
collects signals by sweeping the frequency of the incident illumination.
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In practical application, the frequency-diversity measurement is easier
to implement than that of angular diversity. This then motivates us to
develop a frequency-diversity RCS based technique for the radar target
recognition.

In this paper, the radar target recognition is given based on
projected features of frequency-diversity RCS. Similar to the use
of frequency-diversity techniques in microwave imaging [3, 4], the
RCS are collected by sweeping the frequency of the incident wave.
These frequency-diversity RCS data are then projected onto another
eigenspace for target recognition. To achieve efficient recognition, the
collected frequency-diversity RCS data (usually high-dimensional) are
first projected onto a low-dimensional PCA (principal components
analysis) space [5, 6] and the elementary target recognition is performed
on the PCA space. To achieve reliable recognition, the projected
features on the PCA space are further projected onto the LDA (linear
discriminant algorithm) space [5, 6] and well-separate recognition of
targets can be obtained on the LDA space. Simulation results
show that accurate recognition results are obtained by the proposed
frequency-diversity scheme. In addition, our results also show that
the proposed frequency-diversity scheme has good ability to tolerate
noise effects. The idea of angular or frequency diversity comes from
microwave diversity imaging [7, 8] that reconstructs the shape of a
target by collecting electric fields of diversity. The diversity techniques
of microwave imaging include angular, frequency and polarization
diversity. According to the electromagnetic-wave theory, the scattered
electric field in the far field is proportional to the spatial Fourier
transform of the object function. The use of frequency-diversity
measurement can produce data that efficiently fill the Fourier space.
The frequency-diversity techniques have been applied to microwave
imaging for many years. However, there still exists no study that
utilizes such techniques in radar target recognition. To our knowledge,
this is the first study that applies frequency-diversity RCS to the radar
target recognition.

In Section 2, the formulation of frequency-diversity based radar
target recognition is given. Numerical simulation is given in Section 3.
Finally, the conclusion is given in Section 4.

2. FORMULATION

The proposed radar recognition algorithm has no limitation on types
of targets. Without loss of generality, the targets of simulation are
chosen as ships for simplicity. The frequency-diversity RCS data from
different types of ships are chosen as features for target recognition.
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Figure 1. Schematic diagram of a ship illuminated by an incident
plane wave.

Consider a ship on the sea level (X-Y plane) illuminated by a plane
wave Ei = e−jk·rẑ where k is the wavenumber and r is the location, as
shown in Figure 1. This incident wave propagates horizontally at an
angle of φinc with respect to the −x̂ direction. The spherical coordinate
system is defined as (R, θ, φ) where R is the distance from observation
position to origin, θ is the elevation angle and φ is the azimuth angle.
The RCS in the direction of (θ, φ) is defined as [9]

RCS = lim
R→∞

4πR2

∣∣∣Es(θ, φ)
∣∣∣2∣∣∣Ei

∣∣∣2
. (1)

where Es(θ, φ) is the scattered electric field.
The goal is to identify the target by its frequency-diversity RCS.

The target is illuminated by incident waves from directions of φinc =
0◦, 90◦ and 180◦, respectively. The frequency-diversity (frequencies are
chosen as f1, f2, . . ., fNf

) RCS data from a ship at a fixed evaluation
angle θ are collected to constitute a (3·Nf ) dimensional column vector,
as shown in each column of the matrix structure in Figure 2. Assume
we have C types of known ships totally, i.e., type #c for c= 1, 2, . . . ,
C. By choosing the evaluation angle as θ1, θ2, . . ., θNθ

for all types
of ships, we have nT = Nθ · C column vectors totally (denoted as
xi, i= 1, 2, . . ., nT ) to constitute the RCS matrix, as shown in the
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matrix structure of Figure 2. For simplicity, C is assumed to be 3 in
the illustration of Figure 2. The dimensions of the RCS matrix are
(3 ·Nf ) × (Nθ · C). The signal processing of target recognition in this
study contains two steps, i.e., PCA [5, 6] (the first step) and LDA [5, 6]
(the second step), and will be given in the following.
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Figure 2. Illustration of the frequency-diversity RCS matrix.

In the first step of recognition, the PCA is utilized. The mean
vector m(x) of the total nT training vectors is given as

m(x) =
1
nT

nT∑
i=1

xi. (2)

The centered vector Φi for the column vector xi is given as

Φi = xi −m(x), i = 1, 2, . . . , nT . (3)

The covariance matrix Σ is defined as

Σ =
1
nT

(
Φ1, Φ2, . . . , ΦnT

)
·
(
Φ1, Φ2, . . . , ΦnT

)T
(4)

where “T” denotes the transpose. The dimensions of Σ are (3 ·Nf ) ×
(3 · Nf ). Assume that λi, i= 1, 2, . . . , nPCA are the largest nPCA
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eigenvalues and vi, i= 1, . . . , nPCA are their normalized eigenvectors.
These eigenvectors will constitute an nPCA-dimensional PCA space.
Each column vector xi of the RCS matrix is projected onto the PCA
space to obtain a new vector yi (nPCA-dimensional). The result is

yi = P ·
(
xi −m(x)

)
, i = 1, 2, . . . , nT (5)

where
P = (v1 v2 . . . vnPCA)T . (6)

In general, we have nPCA � (3 ·Nf ). In other words, the dimensions
of the RCS feature are greatly reduced by (6). The mean (or class
center) for features of the type #c target on the PCA space is given
by

m(y)
c =

1
Nθ

c·Nθ∑
i=(c−1)·Nθ

yi, c = 1, 2, . . . , C. (7)

For an unknown target, its frequency-diversity RCS at a given
elevation angle θ are collected to constitute an RCS vector x. This
column vector x is projected onto the PCA space according to (5)–(6)
and the result is y. The distance, i.e., class error, of this measurement
with respect to the known target of type #c is given by

dc =
∥∥∥y −m(y)

c

∥∥∥ , c = 1, . . . , C. (8)

Therefore, we can define the “similarity” with respect to the known
target of type #c as

similarity = 1 − dc

C∑
c=1
dc

, c = 1, . . . , C. (9)

Obviously, we have 0 < similarity < 1. The value of similarity is
proportional to the degree of similarity. The largest similarity means
the unknown target has the most similarity to this type of known ship.

In the second step, the projection of the first step is further
projected onto the LDA space. It should be noted that the goal of this
step is to find a projection that can well separate features of different
classes. Initially, the within-class scatter matrix SW is defined as

SW =
nT∑
i=1

[(
yi −m(y)

c

)
·
(
yi −m(y)

c

)T
]

(10)
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and the between-class scatter matrix SB is defined as

SB =
C∑

c=1

[
nc

(
m(y)

c −m(y)
)
·
(
m(y)

c −m(y)
)T

]
. (11)

In (11), the m(y)
c has been given in (7) and

m(y) =
1
nT

nT∑
i=1

yi. (12)

According to [10, 11], the eigenvectors of [SW ]−1SB will constitute an
eigenspace that separates the projected features best. We may choose
the largest nLDA eigenvalues and their corresponding eigenvectors to
dominate the projection. Therefore, we can project features from the
PCA space to the LDA space as

zi = L · yi, i = 1, 2, . . . , nT , (13)

where L is the transformation matrix with its rows composed of the
nLDA eigenvectors. The process of target recognition on LDA space
is similar to (8)–(9) except that features of PCA space in (8)–(9) are
replaced by features of LDA space.

3. NUMERICAL SIMULATION

In this section, numerical examples are given to illustrate the above
target recognition algorithm. The RCS data are calculated by the
commercial software of Ansoft HFSS. This software has been proved
to be accurate by many researchers in electromagnetic waves. Assume
there are three types of known ships (i.e., C = 3) including type #1
(for modeling the container vessel), type #2 (for modeling the naval
ship) and type #3 (for modeling the fishing boat). The geometrical
models for these three types of known ships are shown in Figure 3. The
dimensions for these three types of ships are chosen to be k · l1 = 9.4,
k · l2 = 6.3 and k · l3 = 3.1, where lc (c= 1, 2, 3) denotes the length for
the ship of type #c. All ships are on the sea level (X-Y plane) and
the characteristic for the surface roughness of sea water is assumed to
be sinusoidal as

z(x, y) =
4
75
l1 · sin

(
15π
4
x

)
sin

(
15π
4
y

)
+

8
75
l1. (14)

The sea water has dielectric constant εr = 81 and conductivity
σ= 4 S/m. The RCS from all types of known ships are collected to
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(a) (b) (c)

Figure 3. Geometrical models for the three types of known ships: (a)
type #1, (b) type #2 and (c) type #3.

constitute a frequency-diversity RCS matrix as the matrix structure
of Figure 2. In the learning phase, the RCS matrix in Figure 2 is
obtained by choosing the evaluation angles to be θ1 = 61◦, θ2 = 63◦,
. . ., θNθ

= 89◦ and the frequencies to be f1 = 3.0 GHz, f2 = 3.1 GHz,
. . . , fNf

= 3.9 GHz. Therefore, we have Nθ = 15 and Nf = 10, and the
dimensions of the RCS matrix are 30×45.

In the testing phase, the frequency-diversity RCS data from the
unknown target at a given evaluation angle θ are collected to constitute
a column vector. In the first example, the testing target (unknown)
is assumed to be the ship of type #1. We will utilize the frequency-
diversity RCS data to decide which type of known ships resembles the
unknown target most. In our simulation, the testing evaluation angles
are chosen as θ = 62◦, 64◦, . . . , and 90◦, respectively. That is, the
target is tested 15 times. Figure 4 shows the similarity with respect to
each type of known ship at different testing evaluation angle of θ. Note
that the highest plot at a given θ means this type of known ship has the
most similarity to the testing target. In Figure 4(a), only the PCA (i.e.,
the first step of Section 2) is utilized. The frequency-diversity RCS data
are projected onto the 2-dimensional PCA space. In Figure 4(b), both
the PCA and LDA (i.e., both the first and second steps of Section 2)
are utilized. The frequency-diversity RCS data are projected onto the
3-dimensional PCA space, and then to the 2-dimensional LDA space.
Figure 4(a) and Figure 4(b) show that the known ship of type #1
resembles the unknown target best. The recognition results are correct
at all the 15 testing evaluation angles and the successful recognition
rate is 15/15 = 100%. The discrimination for the highest plot (i.e.,
difference between the highest plot and other plots) of Figure 4(b) is
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Figure 4. Similarity with respect to each type of known ship at
different testing evaluation angles of θ as the testing target is the ship
of type #1. The RCS data are projected (a) onto the 2-dimensional
PCA space, and (b) onto the 3-dimensional PCA space and then to
the 2-dimensional LDA space.
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Figure 5. Similarity with respect to each type of known ship at
different testing evaluation angles of θ as the testing target is the ship
of type #2. The RCS data are projected (a) onto the 2-dimensional
PCA space, and (b) onto the 3-dimensional PCA space and then to
the 2-dimensional LDA space.
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Figure 6. The mean of successful recognition rate with respect to
noise levels with the frequency-diversity RCS treated by only PCA, or
by PCA and then LDA.

better than that of Figure 4(a).
In the second example, the testing target (unknown) is assumed

to be the ship of type #2. All the recognition procedures are the same
as those of the previous example. Figure 5(a) shows the recognition
results by projecting the frequency-diversity RCS data onto the 2-
dimensional PCA space. It shows that the discrimination for the
highest plot of Figure 5(a) is very poor. The recognition results are
even wrong at the testing evaluation angles of θ = 84◦, 86◦, 88◦, 90◦.
The successful recognition rate is 11/15 = 73.3%. Figure 5(b) shows
the recognition results by projecting the frequency-diversity RCS data
onto the 3-dimensional PCA space, and then to the 2-dimensional LDA
space. It shows that the discrimination for the highest plot is greatly
improved. From Figure 5(b), it shows that the known ship of type #2
resembles the unknown target best. The recognition results are correct
at all the 15 testing evaluation angles and the successful recognition
rate is 15/15 = 100%.

To understand the effects of noise, each RCS is added by a quantity
of independent random numbers having a Gaussian distribution with
zero mean. The standard derivation of noise is normalized by the root-
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mean square value of the RCS. The standard derivations of applied
noises include 10−4, 10−3, 10−2, 10−1, 2× 10−1 and 4× 10−1. Figure 6
shows the mean of successful recognition rate with the noisy frequency-
diversity RCS treated by PCA, or by PCA and then LDA. The
dimensions of the projected PCA and LDA space are the same as those
given in the previous two examples. From Figure 6, it shows that fair
recognition rate can be achieved with the noisy frequency-diversity
RCS treated by only PCA. As the noisy frequency-diversity RCS data
are further treated by LDA, the mean of successful recognition rate will
be greatly improved. The goal of this example is to illustrate that our
frequency-diversity recognition algorithm can tolerate noise effects.

The above numerical simulation (including the Ansoft HFSS
software) is executed using the personal computer with Pentium-3.0
CPU. The computer programs are coded using the Matlab-7.

4. CONCLUSION

In this paper, the radar target recognition is given by projected features
of frequency-diversity RCS. The frequency-diversity RCS data from
targets are first processed by PCA, and then further treated by LDA.
Our results show that accurate recognition results can be obtained
by the proposed frequency-diversity scheme. In addition, the proposed
frequency-diversity scheme can tolerate noise effects in the radar target
recognition. Although the targets of simulation are somewhat simple,
they do not affect the contribution of this study. Because the main
goal of this paper is to show that projected features of frequency-
diversity RCS can well identify radar targets even though there exist
measured noises. From physical points of views, the RCS based
recognition of radar targets is basically an approximate approach of
inverse scattering [12–23]. Since frequency-diversity techniques are
successful in inverse scattering, they must contain much information
about targets. Therefore, it is reasonable that the frequency diversity
based techniques have good performance in the radar target recognition
of this study.
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