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Abstract—The transmittance is studied for a Cantor-like multibarrier
system. The calculation are made in the framework of effective mass
theory. Some typical values of effective masses and potentials are used
in order to have an experimental reference. The techniques of Transfer
Matrix are used to calculate the transmittance of the entire structure
having some dozens of layers. The results display a complex structure
of peaks and valleys. The set of maxima is studied with the tool of
the q-dependent dimension D(q). The set of transmittance maxima
exhibits a fractal structure, or more exactly, a multifractal structure,
i.e., a q-dependent dimension, characterized as usually with limit one
when q parameter tends to −∞ but with a limit between 0 and 1 when
tends to +∞. This numerical experiment demonstrate that spatially
bounded potential may exhibit spectrum with fractal character.

1. INTRODUCTION

The transmittance, energy levels and wave functions has been
studied, among others, for periodic rectangular barriers, superlattices,
quasiregular heterostructures and other multilayer one-dimensional
systems. Nevertheless it is interesting to study non-periodic potentials,
such as self-similar ones among others. In this case the term self-
similar potential means that the height and/or the separation between
barriers is not constant but it is constructed following some replicative
rule. In our case we have chosen the Cantor’s set rule [1]. The
motivation for studying this kind of potentials comes out because
it seems likely to find out that the transmittance reflects the self-
imilar property of the potential through its fractal dimension. In the
other hand Lavrinenko et al. [2, 3] studied the propagation of classical
waves of the optical Cantor filter. This system is not a self-similar
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system, because the refractive indices are not scaled. The authors
observed that the optical spectra has been shown spectral scalability.
In the last few years, a lot of experimental works, concerning the
worth noting properties of porous silicon in chemical and biological
sensing, have been reported [4]. Moretti et al. have compared the
sensitivities of resonant optical biochemical sensor, based on both
periodic and aperiodic porous silicon structures, such as Bragg and the
Thue-Morse multilayer. They observed that the aperiodic multilayer is
more sensitive than the periodic one. Then the task of finding similar
systems with bigger sensitivity is important for applications.
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Figure 1. Cantor-like potential. The main barrier has 3 times the
energy of the other, and 3 times the length. Panel a/b/c shows the
first/second/third generation.

2. METHODOLOGY

Figure 1 shows the first three generations, each generation having 2n−1
barriers. Each generation has a main barrier with an energy height
H0 and spatial width L0, for the second generation the other two
barriers that appear have an energy height H0/3 and spatial width
L0/3 and they are located in the middle third part where there is a
zero potential. The third generation keeps the barriers of the second
generation and adds barriers of height H0/9 and width L0/9 and they
are located in the middle third part where there is a zero potential.
With this algorithm one can construct the following generations. The
transmittance for the potentials described above is computed, using
the transfer matrix technique [5, 6] applied to the one-dimensional
Schrödinger equation [7].

− h̄2

2m
∂2

∂x2
Ψ(x, t) + V (x)Ψ(x, t) = ih̄

∂

∂t
Ψ(x, t) (1)
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Using separation of variables reduces to the time-dependant
Shrödinger equation,

− h̄2

2m
d2

dx2
ψ(x) + V (x)ψ(x) = Eψ(x) (2)

Consider first a localized potential V , restricted to the interval
(a, b); the general solution is

ψ(x) =




Aeikx + Be−ikx if x < a

ψab(x) if a < x < b

Ceikx + De−ikx if b < x

(3)

where k ≡
√

2mE/h̄. When the time factor is included, A exp(ikx)
and C exp(ikx) represent waves propagating to the right, while
B exp(−ikx) and D exp(−ikx) represent waves propagating to the left.

To complete the problem, one solves Eq. (2) for ψ(x) in (a, b).
Then, invoking the appropriate boundary conditions at a and b
[typically, continuity of ψ(x) and its derivative], one obtains two linear
relations among the coefficients A, B, C and D. These can be solved
for any two amplitudes in terms of the other two, and the result can
be expressed as a matrix equation. Usually one chooses to write the
outgoing amplitudes (B and C) in terms of the incoming amplitudes
(A and D) using the so-called “S matrix”.

(
B
C

)
= S

(
A
D

)

We find it more convenient to express the amplitudes to the left
of the barrier (A and B) in terms of those to the right (C and D):

(
A
B

)
= M

(
C
D

)

This 2 × 2 matrix

M =
(

M11 M12

M21 M22

)

is called the “transfer matrix”.
For this particular work, the energy of the main barrier H0 is taken

as 750 meV and the segment L0 is of length 500 Å.
Figure 2 shows the transmittance for the first three generations.

The behavior of the transmittance for high order generations, above
the 6th one, remains approximately the same. This is not surprising
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Figure 2. Transmittance for Cantor-like potential. Panel a/b/c shows
the first/second/third generation.

considering that the added barriers are of the order of H0/3n and L0/3n

or smaller and their contribution is negligible, even when there is 2n

of these barriers.
The transmittance, as expected, exhibits a complex structure

characterized by many maxima and minima in a relatively small
interval of energy. The maxima are related with the discretized
spectrum of the set of wells inside the structure. We have collected all
these maxima and treated them as a set of points in order to calculate
its fractal dimensions D(q).

3. Q DEPENDENT DIMENSIONS

Following Rasband [8], Pérez-Álvarez [9–11] and coworkers, and the
references they cite, we use the so called q-dependent fractal dimensions
in order to describe the strange character of the spectrum as a set of
points. The main point is to cover the set with a collection of boxes of
size ε and to study the Information magnitude

I(ε, q) =
1

1 − q
log

N(ε)∑
j=1

pq
j , (4)

and from this the generalised box-counting dimension

D(q) = − lim
ε→0

I(ε, q)
log [ε]

. (5)

In these formulas pj is the fraction of points in the j-th box. N(ε)
is the number of boxes of size ε.
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In practice the limit in (5) is calculated as the slope of the so
called scaled part of the curve I(ε, q) vs log[ε]. The reader is addressed
to references [10, 12] in order to face some practical aspects and tricks
on this matter.

(a) (b)

Figure 3. I(ε, q) vs log [ε] curves for q = 0 (left panel) and q = 40
(right panel). An straight line with slope −1 is added as a guide for
the eyes. It is clearly seen than dimension at q = 40 is less than unity.

Figure 3 depicts the I(ε, q) vs log [ε] curves for q = 0 and q = 40.
The figures are restricted to the scaled parts of these curves. The
D(q) calculations take as input 725 eigenvalues obtained from the 7th
generation. The conclusion is obvious: the spectrum has D(0) ≈ 1 but
a dimension clearly less tan unity for q = 40, i.e., it has a distribution
of fractal dimensions. The detailed analysis for q ∈ (−∞,+∞) shows
that D(q) goes continuously from 1 at −∞ to ≈ 0.6 at +∞, as it should
be because of very basic principles [12].

4. CONCLUSION

The numerical experiment we present in this paper demonstrate that
the spectrum of elementary excitations in spatially bounded potential
can have a fractal character. It is not at all trivial. Mathematicians
have proved some theorems about the fractality of the spectrum of
Schrödinger-like hamiltonians in some quasiregular sequences [13, 14]
but, as far as we know, there is no solid result on potentials defined
on bounded intervals. We hope our results open a new field of interest
for physicists and mathematicians.
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