
Progress In Electromagnetics Research, PIER 81, 99–119, 2008

A MOMENT METHOD SIMULATION OF
ELECTROMAGNETIC SCATTERING FROM
CONDUCTING BODIES

S. Hatamzadeh-Varmazyar

Department of Electrical Engineering
Islamic Azad University
Science and Research Branch, Tehran, Iran

M. Naser-Moghadasi

Department of Electrical Engineering
Faculty of Engineering
Shahed University
Tehran, Iran

Z. Masouri

Department of Mathematics
Islamic Azad University
Science and Research Branch, Tehran, Iran

Abstract—In this paper a moment method simulation of electromag-
netic scattering problem is presented. An effective numerical method
for solving this problem based on the method of moments and using
block-pulse basis functions is proposed. Some examples of engineer-
ing interest are included to illustrate the procedure. The scattering
problem is treated in detail, and illustrative computations are given
for some cases. This method can be generalized to apply to objects of
arbitrary geometry and arbitrary material.

1. INTRODUCTION

The development of numerical methods for solving integral equations
in Electromagnetics has attracted intensive researches for more than
four decades [1, 2]. The use of high-speed computers allows one to
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make more computations than ever before. During these years, careful
analysis has paved the way for the development of efficient and effective
numerical methods and, of equal importance, has provided a solid
foundation for a through understanding of the techniques.

Over several decades, electromagnetic scattering problems have
been the subject of extensive researches (see [3–41]). Scattering from
arbitrary surfaces such as square, cylindrical, circular, spherical [3–9]
are commonly used as test cases in computational Electromagnetics,
because analytical solutions for scattered fields can be derived for these
geometries [3].

Simulating the problem of electromagnetic scattering from
conducting bodies leads to solve the integral equations of the first
kind with complex kernels. For solving integral equations of the
first kind, several numerical approaches have been proposed. These
numerical methods often use the basis functions and transform the
integral equation to a linear system that can be solved by direct or
iterative methods [42]. It is important in these methods to select an
appropriate set of basis functions so that the approximate solution of
integral equation has a good accuracy.

It is the purpose of this paper to use a set of orthogonal basis
functions called block-pulse functions (BPFs) and to apply them to
the method of moments for solving the problem of electromagnetic
scattering. Using this method, the first kind integral equation reduces
to a linear system of algebraic equations. Solving this system gives an
approximate solution for these problems.

First of all, the electric field integral equation is introduced. Some
characteristics of BPFs are described in Section 3. Then, the method
of moments is proposed for solving integral equations of the first
kind using block-pulse basis functions which is presented in Section 4.
Finally, the problem of electromagnetic scattering from conducting
bodies is described in detail and solved by the presented method in
Section 5, and illustrative computations are given to complete the
procedure.

2. ELECTRIC AND MAGNETIC FIELD INTEGRAL
EQUATIONS

The key to the solution of any scattering problem is a knowledge
of the physical or equivalent current density distributions on the
volume or surface of the scatterer. Once these are known then the
radiated or scattered fields can be found using the standard radiation
integrals. A main objective then of any solution method is to be able
to predict accurately the current densities over the scatterer. This can
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be accomplished by the integral equation (IE) method [43].
In general there are many forms of integral equations. Two of

the most popular for time-harmonic Electromagnetics are the electric
field integral equation (EFIE) and the magnetic field integral equation
(MFIE). The EFIE enforces the boundary condition on the tangential
electric field and the MFIE enforces the boundary condition on the
tangential components of the magnetic field. The electric field integral
equation will be discussed here.

2.1. Electric Field Integral Equation

The electric field integral equation (EFIE) is based on the boundary
condition that the total tangential electric field on a perfectly electric
conducting (PEC) surface of scatterer is zero [43]. This can be
expressed as:

Et
t(r = rs) = Einc

t (r = rs) + Escat
t (r = rs) = 0 on S (1)

or

Escat
t (r = rs) = −Einc

t (r = rs) on S (2)

where S is the conducting surface of the scatterer and r = rs is the
position vector of any point on the surface of the scatterer. The
subscript t indicates tangential components.

The incident field that impinges on the surface of the scatterer
induces on it an electric current density Js which in turn radiates the
scattered field. The scattered field everywhere can be found using the
following equation [43]:

Escat(r) = −jωA − j
1

ωµε
∇(∇ · A) = −j

1
ωµε

[
ω2µεA + ∇(∇ · A)

]
(3)

where
ε is the permittivity of the medium.
µ is the permeability of the medium.
ω is the angle frequency of the incident field.
∇ is the gradient operator.
A is the magnetic vector potential, so that:

A(r) = µ

∫ ∫
S
Js(r′)

e−jβR

4πR
ds′ (4)

where, R is the distance from source point to the observation point.
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Equations (3) and (4) can also be expressed as [43]:

Escat(r)

= −j
η

β

[
β2

∫ ∫
S
Js(r′)G(r, r′)ds′+∇

∫ ∫
S
∇′ · Js(r′)G(r, r′)ds′

]
(5)

where, η is the intrinsic impedance of the medium and β is the phase
constant; r and r′ are the position vectors of the observation point and
source point respectively. also:

G(r, r′) =
e−jβR

4πR
(6)

R = |r − r′| (7)

In Eq. (5), ∇ and ∇′ are, respectively, the gradients with respect to
the observation and source coordinates and G(r, r′) is referred to as
Green’s function for a three-dimensional scatterer.

If the observations are restricted on the surface of the scatterer
(r = rs), then Eq. (5) through Eq. (6) can be expressed using Eq. (2)
as:

j
η

β

[
β2

∫ ∫
S
Js(r′)G(rs, r′)ds′ + ∇

∫ ∫
S
∇′ · Js(r′)G(rs, r′)ds′

]
= Einc

t (r = rs)
(8)

Because the right side of Eq. (8) is expressed in terms of the known
incident electric field, it is referred to as the electric field integral
equation (EFIE). It can be used to find the current density Js(r′)
at any point r = r′ on the scatterer. It should be noted that Eq. (8)
is actually an integro-differential equation, but usually it is referred to
as an integral equation.

Equation (8) is a general surface EFIE for three-dimensional
problems and its form can be simplified for two-dimensional geometries.
Note that this equation gives the EFIE for conducting surfaces. EFIE
for the resistive surfaces will be described in detail in Section 5.

3. BLOCK-PULSE FUNCTIONS

One very important step in any numerical solution is the choice of basis
functions.

Block-pulse functions (BPFs) have been studied by many authors
and applied for solving different problems; for example, see [44, 45].
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3.1. Definition

An m-set of BPFs is defined over the interval [0, T ) as [44]:

φi(t) =


1,

iT

m
� t <

(i + 1)T
m

,

0, otherwise,
(9)

where i = 0, 1, . . . ,m − 1 with a positive integer value for m. Also,
consider h = T/m, and φi is the ith BPF.

There are some properties for BPFs, the most important
properties are disjointness, orthogonality, and completeness.

The disjointness property can be clearly obtained from the
definition of BPFs:

φi(t)φj(t) =
{
φi(t), i = j,

0, i �= j,
(10)

where i, j = 0, 1, . . . ,m− 1.
The other property is orthogonality. It is clear that∫ 1

0
φi(t)φj(t)dt = hδij , (11)

where δij is the Kronecker delta.
The third property is completeness. For every f ∈ L2([0, 1)) when

m approaches to the infinity, Parseval’s identity holds [44]:

∫ 1

0
f2(t)dt =

∞∑
i=0

f2
i ‖ φi(t) ‖2, (12)

where,

fi =
1
h

∫ 1

0
f(t)φi(t)dt. (13)

3.2. Vector Forms

Consider the first m terms of BPFs and write them concisely as m-
vector:

Φ(t) = [φ0(t), φ1(t), . . . , φm−1(t)]T , t ∈ [0, 1) (14)
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above representation and disjointness property, follows:

Φ(t)ΦT (t) =



φ0(t) 0 . . . 0

0 φ1(t) . . . 0
...

...
. . .

...
0 0 . . . φm−1(t)


 , (15)

ΦT (t)Φ(t) = 1, (16)

Φ(t)ΦT (t)V = Ṽ Φ(t), (17)

where V is an m-vector and Ṽ = diag(V ). Moreover, it can be clearly
concluded that for every m×m matrix B:

ΦT (t)BΦ(t) = B̂T Φ(t), (18)

where B̂ is an m-vector with elements equal to the diagonal entries of
matrix B.

3.3. BPFs Expansion

The expansion of a function f(t) over [0, 1) with respect to φi(t),
i = 0, 1, . . . ,m− 1 may be compactly written as [44]:

f(t) 

m−1∑
i=0

fiφi(t) = F T Φ(t) = ΦT (t)F, (19)

where F = [f0, f1, . . . , fm−1]T and fis are defined by (13).
Now, assume k(t, s) is a function of two variables in L2([0, 1) ×

[0, 1)). It can be similarly expanded with respect to BPFs such as:

k(t, s) 
 ΦT (t)KΨ(s), (20)

where Φ(t) and Ψ(s) are m1 and m2 dimensional BPF vectors
respectively, and K is the m1 ×m2 block-pulse coefficient matrix with
kij , i = 0, 1, . . . ,m− 1, j = 0, 1, . . . ,m− 1, as follows:

kij = m1m2

∫ 1

0

∫ 1

0
k(t, s) φi(t) ψj(s)dtds. (21)

For convenience, we can put m1 = m2 = m.
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4. IMPLEMENTING THE METHOD OF MOMENTS
USING BLOCK-PULSE BASIS FUNCTIONS

In this section, we extend the definition of BPFs over any interval [a, b).
Then, we apply them to solve the integral equations of the first kind
by moments method.

Consider the following Fredholm integral equation of the first kind:∫ b

a
k(s, t)x(t)dt = y(s) (22)

where, k(s, t) and y(s) are known functions but x(t) is unknown.
Moreover, k(s, t) ∈ L2([a, b) × [a, b)) and y(s) ∈ L2([a, b)).
Approximating the function x(s) with respect to BPFs by (19) gives:

x(s) 
 F T Φ(s) (23)

such that the m-vector F is BPFs coefficients of x(s) that should be
determined.

Substituting Eq. (23) into (22) follows:

F T

∫ b

a
k(s, t)Φ(t)dt 
 y(s) (24)

Now, let si, i = 0, 1, . . . ,m−1 be m appropriate points in interval
[a, b); putting s = si in Eq. (24) follows:

F T

∫ b

a
k(si, t)Φ(t)dt 
 y(si), i = 0, 1, . . . ,m− 1 (25)

or:
m−1∑
j=0

[
fj

∫ b

a
k(si, t)φj(t)dt

]

 y(si), i = 0, 1, . . . ,m− 1 (26)

Now, replace 
 with =, hence Eq. (26) is a linear system of m
algebraic equations for m unknown components f0, f1, . . . , fm−1. So,
an approximate solution x(s) 
 F T Φ(s), is obtained for Eq. (22).

5. ELECTROMAGNETIC SCATTERING FROM
CONDUCTING BODIES

Now, the problem of electromagnetic scattering from conducting bodies
is solved using the presented approach. We consider two cases for
implementing our method.
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5.1. Conducting Strip

In Fig. 1, there is a metallic strip that is very long in the ±z direction.

Figure 1. A metal strip of width a is encountered by an incoming
TM-polarized plane wave.

The tangential electric field at the surface of a perfect conductor
must vanish (i.e, equal zero) [46]. So, at the surface of the strip, the
incident electromagnetic field (Einc) must be canceled by a scattered
electromagnetic field (Escat). To meet this boundary condition, a
current must flow on the surface of the strip to produce an opposing
electric field. Therefore, the incident and scattered field exactly cancel
at the surface of the perfect conductor. Expressed mathematically:

Einc + Escat = 0 (27)

or

Einc = −Escat (28)

According to Fig. 1, the incoming electromagnetic wave is
polarized with an electric field parallel to the z-axis. This polarization
therefore produces a current on the strip that follows along the z-
axis. The magnetic field of this wave is entirely in the x-y plane,
and is therefore transverse to the z-axis. It is referred as a transverse
magnetic (TM) polarized wave.

The magnetic vector potential of the current flowing along the
strip is given by [46]:

Az =
µ0

4j

∫ a/2

−a/2
Iz(x′)H

(2)
0 (k|x− x′|)dx′ (29)

where:
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k = 2π
λ , free space wave number.

λ is the wave length.
µ0 = 4π × 10−7 H/m, free space permeability.
G(x, x′) = 1

4jH
(2)
0 (k|x− x′|), 2D free space Green’s function.

H
(2)
0 (x) is a Hankel function of the second kind 0th order.

So, the electric field is given by:

Ez(x) = jωAz(x) (30)

or

E(x) =
ωµ0

4

∫ a/2

−a/2
Iz(x′)H

(2)
0 (k|x− x′|)dx′ (31)

where, ω is the frequency of the wave.
According to boundary condition (28), the Eq. (31) becomes:∫ a/2

−a/2
Iz(x′)H

(2)
0 (k|x− x′|)dx′ = − 4

ωµ0
Einc(x) (32)

Choosing Einc(x) = ejkx cos φ0 :∫ a/2

−a/2
Iz(x′)H

(2)
0 (k|x− x′|)dx′ = − 4

ωµ0
ejkx cos φ0 (33)

It is a Fredholm integral equation of the first kind with complex
kernel of the following form:∫ b

a
h(x′)G(x, x′)dx′ = g(x) (34)

where:
h(x′) = Iz(x′)
G(x, x′) = H

(2)
0 (k|x− x′|)

g(x) = − 4
ωµ0

ejkx cos φ0

In Figs. 2–4, the approximate solutions of this equation for a = 2λ
and φ0 = 0, π

4 ,
π
2 , and f = 0.3 GHz are given. Also the current

distributions for a = 4λ are shown in Figs. 5–7.
The radar cross section (RCS) in two dimensions is defined

mathematically as [46]:

σ(φ) = lim
r→∞

2πr
|Escat|2
|Einc|2 (35)
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Figure 2. Current distribution across a 2λ-wide conducting strip
created by a TM-polarized plane wave for φ0 = 0.
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Figure 3. Current distribution across the 2λ-wide conducting strip
for φ0 = π
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Figure 4. Current distribution across the 2λ-wide conducting strip
for φ0 = π
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Figure 5. Current distribution across a 4λ-wide conducting strip
created by a TM-polarized plane wave for φ0 = 0.
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Figure 6. Current distribution across the 4λ-wide conducting strip
for φ0 = π
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Figure 7. Current distribution across the 4λ-wide conducting strip
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In the presented case, the RCS is obtained of the following
equation [46]:

σ(φ) =
kη2

4

∣∣∣∣∣
∫ a/2

−a/2
I(x′)ejkx′ cos φdx′

∣∣∣∣∣
2

(36)

Also, it is possible to define a logarithmic quantity with respect
to the RCS, so that:

σdBlm = 10 log10 σ (37)

The bistatic radar cross section of the strip is given in Fig. 8 for
φ0 = π

2 and a = 8λ.
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Figure 8. The bistatic RCS of a 8λ-wide conducting strip for φ0 = π
2 .

5.2. Thin Wire

In Fig. 9, an electromagnetic wave traveling from the right encounters
a wire at angle α.

According to boundary condition on the conductive surface:

Einc + Escat = 0 (38)

An expression is required to relate the current induced on a wire
by an incident electric field to the scattered field it produces. For a
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Figure 9. An electromagnetic wave encounters a wire of radius a and
length L at an angle α.

wire along z-axis with a radius a of length L, the relationship is [46, 47]:

d2A(z)
dz2

+ k2A(z) = j4πωε0Ez(z) (39)

A(z) =
∫ L/2

−L/2
Iz(z′)G(z, z′)dz′ (40)

G(z, z′) =
∫ 2π

0

e−jkR

R
dφ′ (41)

R =

√
(z − z′)2 +

(
2a sin

φ′

2

)2

(42)

In many applications, the wire radius is very small compared with
a wavelength. So, R is often approximated using the following form:

R ≈
√

(z − z′)2 + a2 (43)

The incident electric field along the conductor from a plane wave
at angle α is:

Ez = ejk cos α sinα (44)

Consider a special case of a plane wave at broadside (α = π
2 ).

This plane wave will drive the current in a symmetrical manner. This
implies that I(z) = I(−z), which means A(z) = A(−z). For these
conditions, the final form of the integral equation of the wire current
is [46]:∫ L/2

−L/2
Iz(z′)G(z, z′)dz′ = C1 cos kz + j

4πωε0
k2 sinα

ejkz cos α (45)
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Figure 10. Current distribution along the thin wire of length 4λ for
α = π
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Figure 11. Current distribution along the thin wire of length 6λ for
α = π
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Figure 12. Current distribution along the thin wire of length 8λ for
α = π
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Figure 13. Radiation pattern of a thin wire of length 8λ.



Progress In Electromagnetics Research, PIER 81, 2008 115

This is a Fredholm integral equation of the first kind and C1 is an
unknown coefficient that must be determined. For determining C1, the
number of match points must be m+1 instead of m. The approximate
solution of this equation gives the current distribution along the wire.
Considering a = 0.001L, the current distributions for L = 4λ, 6λ and
8λ, and for α = π

2 are shown in Figs. 10–12 respectively.
The radiation pattern of this wire is obtained of the following

equation [48]:

f(α) =
∫ L/2

−L/2
Iz(z′)ejkz′ cos αdz′ (46)

Also, it is possible to define a logarithmic quantity with respect
to f , so that:

F = 20 log10 |f | (dB) (47)

Figure 13 gives the radiation pattern F for L = 8λ.

6. CONCLUSION

The presented method in this paper is applied to solve the problem of
electromagnetic scattering from conducting bodies.

As the numerical results showed, this method reduces an integral
equation of the first kind to a linear system of algebraic equations.

The problem of electromagnetic scattering from conducting bodies
was described in detail, and illustrative computations were given for
some cases. The presented approach can be generalized to apply to
objects of arbitrary geometry and arbitrary material.
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