
Progress In Electromagnetics Research, PIER 81, 73–97, 2008

TRUNCATED COSINE FOURIER SERIES EXPANSION
METHOD FOR SOLVING 2-D INVERSE SCATTERING
PROBLEMS

A. Semnani and M. Kamyab

Department of Electrical Engineering
K. N. Toosi University of Technology
P.O. Box 16315-1355, Tehran, Iran

Abstract—Truncated cosine Fourier series expansion method is
applied for reconstruction of lossy and inhomogeneous 2-D media by
using inverse scattering method in time domain. In this method,
the unknown parameters are expanded in a cosine Fourier series
and coefficients of this expansion are optimized in particle swarm
optimization (PSO) routine with the aid of finite difference time
domain (FDTD) method as an electromagnetic (EM) solver. The
performance of the algorithm is studied for several 2-D permittivity
and conductivity profile reconstruction cases. It is shown that since
only a limited number of terms are retained in the expansion, using
the proposed method guarantees the well-posedness of the problem and
uniqueness of the solution and various types of regularization may be
used to only have more precise reconstruction. It is also shown that
the number of unknowns in optimization routine is reduced more than
75 percent as compared with conventional methods which leads to a
considerable reduction in the amount of computations with negligible
adverse effect on the precision of reconstruction. Sensitivity analysis
of the suggested method to the number of expansion terms in the
algorithm is studied, as well.

1. INTRODUCTION

In an inverse scattering problem, one tries to reconstruct or identify
an object based on data available through EM field components back
scattered from object illuminated by known incident wave. The
data needed for such purpose may be collected for example from
measurements or design objective.

Inverse scattering has gained considerable attention because of
its vast applications in different branches of science such as medical
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tomography, non-destructive testing, object detection, geophysics,
ground penetrating radars, remote sensing, atmospheric science and
optics [1–7].

Three important issues must be preliminary considered in an
inverse scattering problem; the non-uniqueness, the ill-posedness, and
the intrinsic nonlinearity [8–10]. The first two items appear because
the operator that maps the scatterer properties to the scattered field
is compact. The non-uniqueness and the ill-posedness can be treated
by using regularization schemes [11–17]. On the other hand, the
nonlinearity emerges from the fact that the scattered field is a nonlinear
function of the electromagnetic properties of the scatterers due to
multiple scattering phenomena. The nonlinearity of the problem is
handled by applying iterative optimization techniques.

Recently, inverse scattering problems are studied in global
optimization-based procedures. The unknown parameters of each cell
of the medium grid would be directly considered as the optimization
parameters. Therefore, the general form of cost function for
optimization routine can be expressed as
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where �Esim and �Hsim are the simulated fields obtained by the FDTD
method [18] in each optimization iteration. �Emeas and �Hmeas are
measured fields, I and J are the number of transmitters and receivers,
respectively and T is the total time of measurement. On the other
hand, as discussed before, regularization must be used to overcome
the intrinsic ill-posedness and non-uniqueness of the inverse problem.
Hence, the cost function should be modified as
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Here R(εr, σ, µ) is the regularization term and λ is the regularization
factor.

Unfortunately, the conventional optimization-based methods
stated above suffer from two main drawbacks. The first is the huge
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Figure 1. General form of the problem. Reconstruction of the
permittivity and conductivity profiles of a lossy and inhomogeneous 2-
D medium surrounded by known media (here free space) is considered.
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Figure 2. Block diagram of the expansion method for solving inverse
scattering problems [19].
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Figure 3. Geometrical configuration of the problem. One transmitter
and four receivers are used in all case studies.

number of the unknowns especially in two-dimensional (2-D) and
three-dimensional (3-D) cases which increases not only the amount
of computations, but also the degree of ill-posedness. Another
disadvantage is the determination of regularization factor which is
rather a difficult task. Therefore, the truncated cosine Fourier series
expansion method which reduces the amount of computations along
with the sensitivity of the algorithm to the regularization term has
been introduced [19]. With the help of this algorithm, it is possible to
use (1) instead of (2) with assurance about the well-posedness of the
problem.

In this paper, the truncated cosine Fourier series expansion
method is applied for computationally efficient reconstruction of 2-
D inhomogeneous and lossy structures. The general form of the
problem, the expansion method and the mathematical considerations
of the method are explained in Section 2. In Section 3, several 2-D
inhomogeneous and lossless or lossy case studies are considered and
the efficiency of the method is studied for all of them. Finally in
Section 4, two important issues regarding sensitivity considerations of
the proposed expansion method are addressed.
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2. TRUNCATED COSINE FOURIER SERIES
EXPANSION METHOD FOR 2-D PROBLEMS

Use of 2-D approximation simplifies the computations since the
problem is generally reduced from vectorial to scalar which decreases
the dimension of the solution space significantly. Despite the
approximation, the 2-D assumption is appropriate in many cases and
there are good examples of good 2-D imaging algorithms which have
proven to be quite useful in practice [1, 5, 6, 15].

The permittivity and conductivity profiles reconstruction of a
lossy and inhomogeneous 2-D region as shown in Fig. 1 is considered.

It has been shown [19–21] that instead of direct optimization of the
unknowns, we can expand them in terms of a complete set of orthogonal
basis functions and optimize the coefficients of the expansion in a global
optimization routine like PSO [22–24]. If cosine basis functions are
used for our 2-D case, the expansion of the relative permittivity profile
in transverse x-y plane which is homogeneous along z can be written
as

εr (x, y) =
N∑

n=0

M∑
m=0

dnm cos
(nπ

a
x
)

cos
(mπ

b
y
)

(3)

where a and b are the dimensions of the problem in the x and y
directions, respectively and the coefficients, dnm, are to be optimized.
In this case, the number of optimization parameters is (N + 1) ×
(M + 1) in comparison with conventional methods in which this
number is equal to the number of grid points. This results in a
considerable reduction in the amount of computations. The block
diagram of the applied algorithm is illustrated in Fig. 2.
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Figure 4. Permittivity profile reconstruction of case study #1 by
using the expansion method without regularization. (a) Original
profile, (b) Initial guess, (c) Reconstruction after 30 iterations, (d)
Reconstruction after 100 iterations, and (e) Reconstruction after 200
iterations.

According to Fig. 2, based on an initial guess for a set of
expansion coefficients, dnm , for a lossless case for instance, the relative
permittivity is calculated based on (3). Then, FDTD code computes
trial electric and magnetic simulation fields. Here we use a Gaussian
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Figure 5. Cost function of optimization routine for permittivity
profile reconstruction of case study #1.
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pulse for excitation and UPML [18] for truncation of the problem
space in FDTD simulations. In our study, due to the lack of real
measurement data, measured fields are also obtained by an FDTD
direct simulation. In each step of optimization routine, the cost
function is calculated. Then PSO as a global optimizer is used to
minimize this cost function by changing the coefficients of relative
permittivity and conductivity profiles expansions, iteratively.

Since inverse problems are non-unique and ill-posed in nature,
a priori information must be applied for stabilizing the algorithm
as much as possible. To achieve this, we may impose two physical
constraints on the unknown parameters of the medium. First, it is
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Figure 6. Comparison of measured and simulated fields in
reconstruction of case study #1. (a) Ez field in observation point
#1, (b) Hx field in observation point #3, (c) Hy field in observation
point #4.

assumed that the relative permittivity and conductivity have limited
ranges of variation which is reasonable for real structures, i.e.,

1 ≤ εr (x, y) ≤ εr, max (4)

and

0 ≤ σ (x, y) ≤ σmax (5)

0
2

4
6

8
10

0
2

4
6

8
10

1

1.5

2

2.5

3

3.5

XY

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

(a)



82 Semnani and Kamyab

0
2

4
6

8
10

0
2

4
6

8
10

1

1.5

2

2.5

3

3.5

XY

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

(b)

0
2

4
6

8
10

0
2

4
6

8
10
1.5

2

2.5

3

3.5

XY

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

(c)

Figure 7. Permittivity profile reconstruction of case study #1 by
using (a) Tikhonov energy regularization, (b) second order Sobolev
regularization, and (c) TV regularization.

The second assumption is that the permittivity and conductivity
profiles may not have severe fluctuations or oscillatory behaviour.
According to what follows, these two important conditions are
reflected on expansion coefficients as physical constraints during the
optimization process.

It is known that average of a function with known limited range
is located within that limit, that is if

L1 ≤ f (x, y) ≤ L2,

{
x1 ≤ x ≤ x2

y1 ≤ y ≤ y2
(6)
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(d)

(e)

Figure 8. Permittivity profile reconstruction of case study #2 by
using the expansion method without regularization. (a) Original
profile, (b) Initial guess, (c) Reconstruction after 30 iterations, (d)
Reconstruction after 100 iterations, and (e) Reconstruction after 200
iterations.

Then

L1 ≤ 1
(x2 − x1) (y2 − y1)

∫ x2

x1

∫ y2

y1

f (x, y) dydx ≤ L2 (7)

Thus, for relative permittivity profile expansion we have

1 ≤ d00 ≤ εr, max (8)
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For x = 0 and y = 0, (3) reduces to

εr(0, 0) =
N∑

n=0

M∑
m=0

dnm ⇒ 1 ≤
N∑

n=0

M∑
m=0

dnm ≤ εr, max (9)

and for x = a and y = b, we have

εr(a, b) =
N∑

n=0

M∑
m=0

(−1)n+m dnm ⇒

1 ≤
N∑

n=0

M∑
m=0

(−1)n+m dnm ≤ εr, max (10)

Using Parseval theorem, another relation between expansion coeffi-
cients and upper bound of relative permittivity may be written. That
is

1
(x2 − x1) (y2 − y1)

∫ x2

x1

∫ y2

y1

|f (x, y)|
2

dydx =
N∑

n=0

M∑
m=0

|dnm|2 (11)

Based on (3), (11) may be simplified as

1 ≤
N∑

n=0

M∑
m=0

|dnm|2 ≤ ε2
r, max (12)

By using (8), (9), (10) and (12) in the initial guess of the expansion
coefficients and as the damping boundary condition [22] during the
optimization process, the routine converges in a considerable faster
rate. Similar conditions can be used for conductivity profiles in lossy
cases.

3. SIMULATION RESULTS

The proposed expansion method is utilized for three different cases. In
the simulations of all case studies, one transmitter (I = 1) and four
receivers (J = 4) are used around the under reconstruction medium as
shown in Fig. 3. The population in PSO algorithm is chosen equal to
50, the maximum iteration is considered to be 200 and the number of
time steps is limited to T = 300. A Gaussian waveform is used in the
source point as the excitation.

Case study #1: In the first sample case, we consider an
inhomogeneous and lossless 2-D medium consisting 10 × 10 cells.
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Figure 9. Permittivity profile reconstruction of case study #3
by using expansion method with the help of second order Sobolev
regularization. (a) Original profile and (b) Reconstructed profile.

Therefore, only the permittivity profile reconstruction is considered.
In the expansion method, the number of expansion terms in both x
and y directions are set to 5 (N = M = 4). Thus, instead of 100
unknowns in direct optimization method we only have 25 unknowns in
expansion method. This means 75 percent reduction in the number of
unknowns which results in decreasing the required number of particles
and iterations in the optimization routine.

The reconstructed profiles with the use of expansion method in
several optimization iterations are shown in Fig. 4. As can be seen, a
completely random initial expansion coefficients lead to a really drastic
permittivity profile as starting point in iteration process according to
Fig. 4(b). However, the algorithm which uses a global optimization
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Figure 10. Conductivity profile reconstruction of case study #3
by using expansion method with the help of second order Sobolev
regularization. (a) Original profile and (b) Reconstructed profile.

routine has the ability of good reconstruction according to Fig. 4(e).
Also, inspection of the results indicates that the algorithm has a
relatively fast convergence rate.

The cost function (1) is graphed versus the iteration number in
Fig. 5. It is seen that the PSO as a powerful global optimization
method reduces the cost function quickly in this 5×5 2-D case. It is to
be noted that due to drastic variations of cost function at the beginning
iterations which cause the unrealizable changes in remaining iterations,
the cost function is plotted from 30th iteration.

According to (1), it is seen that least square criterion between
measured and simulated electric and magnetic fields is used as cost
function in this algorithm. As a check of method validity, the measured
and simulated scattered fields of case study #1 in some different
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Figure 11. Comparison of reconstructions by the expansion method
with different number of expansion terms for case study #1. (a)
Original profile, (b) N = M = 3, (c) N = M = 5 and (d) N = M = 8.

observation points at the end of reconstruction process for this TMz

case are plotted in Fig. 6. It can be seen that the simulated fields are
completely coincide with measured ones.

As mentioned before, various kinds of regularization terms may
be used to have more precise reconstruction. To investigate this, we
have used the expansion method with the help of Tikhonov energy
regularization [11], second order Sobolev regularization [12] and total
variation (TV) regularization [13] with N = M = 4 according to (2)
for reconstruction of case study #1. The results are shown in Fig. 7.
Although some improvement are observed especially by using second
order Sobolev and TV regularizations, but the differences is not very
significant. Also, the optimized Fourier series expansion coefficients for
reconstruction of case study #1 without and with regularization terms
are depicted in Table 1 for comparison. It is seen that the coefficients
of expansion are close to each other especially in lower frequencies.

It should be noted from the above reconstruction results that
in spite of a valuable reduction in the amount of computations in
the proposed expansion method, the reconstructed profiles have quite
acceptable precisions.

Case study #2: In the second example, another lossless and
inhomogeneous medium with 20 × 20 cells is considered. In the
expansion method, N and M are chosen equal to 5. Therefore the
number of unknowns is reduced to about one-tenth. The reconstructed
profiles by using the expansion method in different iterations of
optimization routine are depicted in Fig. 8. The Fourier expansion
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(d)

Figure 12. Comparison of reconstructions by the expansion method
with different number of expansion terms for case study #2. (a)
Original profile, (b) N = M = 4, (c) N = M = 6 and (d) N = M = 10.

coefficients for this case are represented in Table 2.
Case study #3: In this case, a lossy and inhomogeneous

medium with 10 × 10 cells is considered. Therefore, we have two
expansions for relative permittivity and conductivity profiles and in
both expansions, N and M are chosen equal to 4. The reconstructed
profiles of permittivity and conductivity by using second order Sobolev
regularization are shown in Figs. 9 and 10, respectively. The Fourier
expansion coefficients for this case for both profiles expansions are
represented in Table 3.

The results for all three cases which are generally inhomogeneous
and lossy or lossless media show that the proposed expansion method
can tolerably reconstruct the unknown media with a considerable
reduction in the amount of computations as compared to the
conventional direct optimization of the unknowns.

4. SENSITIVITY CONSIDERATIONS

Regarding sensitivity of the algorithm, there are two important
remarks we would like to explain. The first is that how the optimum
number of expansion terms, N and M , should be chosen? Small values
of N and M reduce the accuracy of reconstructed result, while large
values cause oscillatory response or even divergence of the algorithm.
This is clearly seen in the reconstructed profiles of Figs. 11 and
12 for case study #1 and #2, respectively. Our experiences from
various permittivity and conductivity profiles reconstruction leads to
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Table 1. Cosine Fourier series expansion coefficients (dnm)
for permittivity reconstruction of case study #1 (a) without
regularization, (b) by using Tikhonov energy regularization, (c) by
using second order Sobolev regularization, and (d) by using TV
regularization.

❍❍❍❍❍n
m

0 1 2 3 4

0

(a) 2.2271 0.0027 −0.4909 0.0036 −0.1743

(b) 2.1758 −0.0171 −0.4435 −0.0137 −0.1392

(c) 1.9827 0.0569 −0.6146 0.0228 −0.0499

(d) 2.2181 −0.0112 −0.4925 −0.0152 −0.1095

1

−0.0004 −0.0047 0.0061 0.0716 −0.0277

0.0076 −0.0152 0.002 0.0206 0.0065

−0.0353 −0.0644 −0.0421 −0.0266 −0.0135

−0.011 0.002 −0.0143 −0.0013 −0.0068

2

−0.4958 0.0163 0.4887 0.0394 −0.0163

−0.5067 0.0391 0.3817 0.0219 0.0635

−0.6409 −0.0293 0.4214 0.0062 0.0238

−0.4275 −0.0195 0.4372 0.013 0.0289

3

0.0031 −0.0513 0.0268 0.0192 0.005

0.0008 −0.0291 −0.0512 0.028 0.0023

0.0239 0.0484 0.029 0.0173 0.0125

−0.0021 −0.0028 −0.0492 0.0026 0.0082

4

−0.153 −0.0477 0.0153 −0.0125 0.0211

−0.156 0.0067 0.0866 −0.0024 0.0471

−0.1003 −0.0112 0.0514 −0.0123 0.0125

−0.0959 0.0084 0.041 −0.0072 0.0563

the conclusion that choosing the number of expansion terms between
4 and 7 may be suitable for most of the 2-D reconstruction problems.
The results shown in Figs. 11 and 12, confirm this idea for our two
sample case studies.

The second important issue is that since the under reconstructed
profiles are estimated by a truncated expansion in this algorithm,
the number of required terms depends only on the profile variations
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Table 2. Cosine Fourier series expansion coefficients (dnm) for
permittivity reconstruction of case study #2 without regularization.

❍❍❍❍❍n
m

0 1 2 3 4 5

0 2.8772 −0.5342 0.1135 −0.0538 0.0041 0.0946

1 −0.5712 −0.5385 0.0027 −0.0593 0.0552 0.049

2 0.1102 0.0564 −0.1705 0.0205 0.0421 −0.0003

3 −0.0316 −0.0366 0.0292 −0.0275 −0.049 0.1276

4 0.0287 −0.0331 −0.0215 0.024 0.0281 0.0486

5 0.1727 0.0882 −0.032 −0.009 −0.0112 −0.0176

Table 3. Cosine Fourier series expansion coefficients (dnm) for
reconstruction of case study #3 by using second order Sobolev
regularization. (a) permittivity and (b) conductivity expansion
coefficients.

❍❍❍❍❍n
m

0 1 2 3 4

0
(a) 1.5567 −0.0293 −0.208 0.0279 −0.0443

(b) 0.0236 −0.0025 0.001 0.0001 0.0004

1
0.0638 −0.0321 −0.0041 0.008 0.009

−0.0058 −0.0029 0.0005 0.0004 0.0005

2
−0.244 0.0236 0.1525 −0.0062 0.0259

−0.0006 −0.0016 −0.001 0.0006 −0.0001

3
0.0209 −0.0066 −0.0302 0.001 −0.019

0.0003 0 −0.0001 0 −0.0005

4
−0.0464 0.0059 0.0141 −0.0114 0.0067

0 0.0002 0.0002 −0.0003 −0.0002

and not on the dimensions of the region. Therefore, a brilliant
advantage of this method is the possibility of reconstruction of large
regions with only a few number of expansion terms. In Fig. 13, a
permittivity profile similar to that of case study #1 but five times
expanded is reconstructed tolerably by the expansion method with
again N = M = 4. It means that a 2500 cell region is reconstructed
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with only 25 parameters which shows 99 percent reduction in the
number of optimization parameters in comparison with conventional
direct method.

(a)

(b)

Figure 13. A 50 × 50 cell region permittivity profile reconstruction
by the expansion method. (a) Original profile and (b) Reconstructed
profile with N = M = 4.

5. CONCLUSION

A computationally efficient method which is based on combination of
the cosine Fourier series expansion, the FDTD and the PSO algorithms
has been applied for reconstruction of 2-D cases. The mathematical
formulations of the method have been derived completely and
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the algorithm has been examined for reconstruction of several
inhomogeneous lossless and lossy cases. With a considerable reduction
in the number of the unknowns and consequently the required number
of particles and optimization iterations as compared with conventional
inverse scattering methods, the relative permittivity and conductivity
profiles of 2-D media have been reconstructed successfully. It has been
shown by sensitivity analysis that for obtaining well-posedness as well
as accurate reconstruction simultaneously, the number of expansion
terms must be chosen intelligently. Finally, it has been illustrated that
due to the independence of the method on the region dimensions, it is
possible to reduce the optimization parameters in the reconstruction
of large regions, significantly.

ACKNOWLEDGMENT

This work was supported by the Iran Telecommunication Research
Center (ITRC) under contract No. T-500-10528.

REFERENCES

1. Bindu, G., A. Lonappan, V. Thomas, C. K. Aanandan, and
K. T. Mathew, “Active microwave imaging for breast cancer
detection,” Progress In Electromagnetics Research, PIER 58, 149–
169, 2006.

2. Colton, D. and P. B. Monk, “Target identification of coated
objects,” IEEE Transactions on Antennas and Propagation,
Vol. 54, No. 4, 1232–1242, 2006.

3. Semenov, S. Y., V. G. Posukh, A. E. Bulyshev, Y. E. Sizov,
and P. N. Repin, “Microwave tomographic imaging of the
heart in intact swine,” Journal of Electromagnetic Waves and
Applications, Vol. 20, No. 7, 873–890, 2006.

4. Rosenthal, A. and M. Horowitz, “Inverse scattering algorithm
for reconstructing strongly reflecting fiber bragg gratings,” IEEE
Journal of Quantum Electronics, Vol. 39, No. 8, 1018–1026, 2003.

5. Chen, X. and K. Huang, “Microwave imaging of buried
inhomogeneous objects using parallel genetic algorithm combined
with FDTD method,” Progress In Electromagnetics Research,
PIER 53, 283–298, 2005.

6. Popovic, M. and A. Taflove, “Two-dimensional FDTD inversescat-
tering scheme for determination of near-surface material proper-
ties at microwave frequencies,” IEEE Transactions on Antennas
and Propagation, Vol. 52, No. 2, 2366–2373, 2004.



96 Semnani and Kamyab

7. Huang, C. H., Y. F. Chen, and C. C. Chiu, “Permittivity
distribution reconstruction of dielectric objects by a cascaded
method,” Journal of Electromagnetic Waves and Applications,
Vol. 21, No. 2, 145–159, 2007.

8. Colton, D. and L. Paivarinta, “The uniqueness of a solution to
an inverse scattering problem for electromagnetic waves,” Arc.
Ration. Mech. Anal., Vol. 119, 59–70, 1992.

9. Isakov, V., “Uniqueness and stability in multidimensional inverse
problems,” Inverse Problems, Vol. 9, 579–621, 1993.

10. Sheen, D. and D. Shepelsky, “Uniqueness in the simultaneous
reconstruction of multiparameters of a transmission line,” Progress
In Electromagnetics Research, PIER 21, 153–172, 1999.

11. Tikhonov, A. N. and V. Arsenine, Solutions of Ill-posed Problem,
Winston, New York, 1977.

12. Hansen, P. C., Rank Deficient and Discrete Ill-posed Problems:
Numerical Aspects of Linear Inversion, SIAM, Philadelphia, 1998.

13. Abubakar, A. and P. M. Van Den Berg, “Total variation as
a multiplicative constraint for solving inverse problems,” IEEE
Transactions on Image Processing, Vol. 10, No. 9, 1384–1392,
2001.

14. Abubakar, A., P. M. Van Den Berg, T. M. Habashy, and
H. Braunisch, “A multiplicative regularization approach for
deblurring problems,” IEEE Transactions on Image Processing,
Vol. 13, No. 11, 1524–1532, 2004.

15. Chung, Y. S., C. Cheon, and S. Y. Hahn, “Reconstruction
of dielectric cylinders using FDTD and topology optimization
technique,” IEEE Transactions on Magnetics, Vol. 36, No. 4, 956–
959, 2000.

16. Rekanos, I. T. and A. Raisanen, “Microwave imaging in the
time domain of buried multiple scatterers by using an FDTD-
based optimization technique,” IEEE Transactions on Magnetics,
Vol. 39, No. 3, 1381–1384, 2003.

17. Abubakar, A., T. M. Habashy, and P. M. Van Den Berg,
“Nonlinear inversion of multi-frequency microwave fresnel data
using the multiplicative regularized contrast source inversion,”
Progress In Electromagnetics Research, PIER 62, 193–201, 2006.

18. Taflove, A. and S. C. Hagness, Computational Electrodynamics:
The Finite-difference Time-domain Method, 3rd edition, Artech
House, 2005.

19. Semnani, A. and M. Kamyab, “An enhanced method for inverse
scattering problems using Fourier series expansion in conjunction



Progress In Electromagnetics Research, PIER 81, 2008 97

with FDTD and PSO,” Progress In Electromagnetics Research,
PIER 76, 45–64, 2007.

20. Meyer, T., A. Jostingmeier, and A. S. Omar, “Microwave imaging
using a novel regularization scheme,” Proceedings of the Antennas
and Propagation Society International Symposium, Vol. 3, 175–
178, 2003.

21. Khalaj-Amirhosseini, M., “Reconstruction of inhomogeneous di-
electrics at microwave frequencies,” Progress In Electromagnetics
Research, PIER 77, 75–84, 2007.

22. Robinson, J. and Y. Rahmat-Samii, “Particle swarm optimization
in electromagnetics,” IEEE Transactions on Antennas and
Propagation, Vol. 52, No. 2, 397–407, 2004.

23. Lee, K. C. and J. Y. Jhang, “Application of particle swarm
algorithm to the optimization of unequally spaced antenna
arrays,” Journal of Electromagnetic Waves and Applications,
Vol. 20, No. 14, 2001–2012, 2006.

24. Chen, T. B., Y. L. Dong, Y. C. Jiao, and F. S. Zhang, “Synthesis of
circular antenna array using crossed particle swarm optimization
algorithm,” Journal of Electromagnetic Waves and Applications,
Vol. 20, No. 13, 1785–1795, 2006.


