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Abstract—In this paper, a new evolutionary learning algorithm based
on a hybrid of improved real-code genetic algorithm (IGA) and particle
swarm optimization (PSO) called HIGAPSO is proposed. In order to
overcome the drawbacks of standard genetic algorithm and particle
swarm optimization, some improved mechanisms based on non-linear
ranking selection, competition and selection among several crossover
offspring and adaptive change of mutation scaling are adopted in
the genetic algorithm, and dynamical parameters are adopted in
PSO. The new population is produced through three approaches to
improve the global optimization performance, which are elitist strategy,
PSO strategy and improved genetic algorithm (IGA) strategy. The
effectiveness of the proposed algorithm has been compared with GAs
and PSO, synthesizing a circular array, a linear array and a base station
array. Results show that the proposed algorithm is able to adapt itself
to different electromagnetic optimization problems more effectively.

1. INTRODUCTION

With the development of radar and mobile communication systems,
special shapes of antenna beams are needed [1–8], which demand more
variables to control and form the array pattern. In the array pattern
synthesis, the objective function and constraint condition are often
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highly nonlinear and nondifferentiable. Therefore, analytical methods,
such as Taylor method and the Chebishev method, are not applicable
any more. To this end, stochastic methods are necessary [9, 10] to
efficiently deal with large nonlinear search spaces.

In contrast to traditional computation systems, evolutionary
computation [11–14] provides a more robust and efficient approach
for solving complex real-world problems. Genetic Algorithm(GA) [15–
17] has proven to be a useful method of optimization for difficult
and discontinuous multidimensional engineering problems. GA is very
efficient at exploring the entire search space, but it is relatively poor
in finding the precise local optimal solution in the region where the
algorithm converges. A new method of optimization, Particle Swarm
Optimization(PSO) [18–20], is able to accomplish the same goal as GA
optimization in a new and faster way. Since PSO and GA both work
with a population of solutions, combining the searching abilities of both
methods seems to be a good approach. Some attempts have been made
in this direction, but with a weak integration of the two strategies.
Precisely, most of the times one technique has been used just as a pre-
optimizer for the initial population of the other technique [21, 22]. In
order to improve the speed of convergence of evolutionary algorithms,
in this paper, GA and PSO are strong combined for synthesizing three
types of antenna arrays.

Based on GA and PSO, a hybrid algorithm called HIGAPSO
is presented. Firstly, some improved mechanisms such as non-linear
ranking selection, competition and selection among several crossover
offspring and adaptive change of mutation scaling are adopted in the
genetic algorithm. Then, the improved genetic algorithm is combined
with PSO that is improved by dynamical parameters. During each
iteration, the population is divided into three parts, which are evolved
with the elitist strategy, PSO strategy and the improved genetic
algorithm strategy respectively. Therefore, this kind of technique can
make balance between acceleration convergence and averting precocity
as well as stagnation. The simulation results show the effectiveness
of the algorithm in synthesizing conformal array, linear array with
prescribed nulls and array with complex pattern.

The remaining sections of this paper are organized as follows:
Section 2 briefly explains the formulation of the problem. Section 3
describes the implementations of IGA and PSO in the proposed
HIGAPSO algorithm. The numerical examples are then presented in
Section 4 and conclusion is made in Section 5.
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2. PROBLEMS FORMULATION

In synthesizing of a linear array, the far field array factor of this array
can be written as

F (θ) =
N∑

n=1

an exp
(
j

(
n

2π
λ

d sin θ + βn

))
(1)

where n is the element number, λ is the wavelength, βn is the excitation
current phase of the elements and an is the element excitation current
amplitude. d denotes the inter-element spacing, and θ is the polar
angle of far-field measured from broadside (−90◦ to +90◦).

Normalized absolute far-field is

Fn(θ) =
|F (θ)|

|F (θ)|max

(2)

We try to use a modified Bernstein polynomial [23] to reduce the
number of variables when calculating the circular array. The modified
Bernstein polynomial is

F (U) =




B1 +
1 −B1

AMA (1−A)M(1−A)
UMA (1 − U)M(1−A) , 0 ≤ U ≤ A

B2 +
1 −B2

AMA (1−A)M(1−A)
UMA (1 − U)M(1−A) , A ≤ U ≤ 1

(3)

where B1, B2, M , A are parameters in the polynomial, B1 and B2

specify the left and right endpoints F (0) and F (1) respectively. For
θ = 90◦, the far field array factor of the circular array is

E(90◦, φ) =
N∑

n=1

F (U)n exp
(
j
2π
λ

r (cos (φ− βn) − cos (βn))
)

(4)

where F (U)n is the nth excitation amplitude, being the nth equal
sampling point value of F (U) and r is the circle radius of the array.

A key point of optimization is the construction of the target
function. Although the problem under discussion is a minimization
problem, we convert it to a maximization problem. The fitness function
to be maximized for array optimization problem can be expressed as
follows:

Fitness =
U (Fo(θ) − Fd(θ))

α×|MSLL−SLV L|+β×|NULL PAT−NLV L|+γ×|Fo(θ)−Fd(θ)|
(5)
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where MSLL is the highest sidelobe level, SLV L is the desired sidelobe
level, NULL PAT is the average nulls depth, and NLV L is the desired
nulls depth. Fo(θ) and Fd(θ) are, respectively, the pattern obtained by
optimization and the desired pattern. The values of α, β and γ stand
for the weight coefficients such that the fitness function is capable
of guiding potential solutions to obtain satisfactory array pattern
performance with desired properties. U(t) the unit step function, can
be depicted as:

U(t) =
{

1 t ≥ 0
0 t < 0

(6)

3. HYBRID OF IMPROVED GA AND PSO (HIGAPSO)

The proposed HIGAPSO combines GA with PSO to form a hybrid
algorithm. Due to combination of different optimization mechanisms,
not only the offspring can keep diversity, but also PSO can keep the
balance of global search and local search, so the entire search ability of
the algorithm can be improved. In this section, improved GA and PSO
are introduced first, followed by a detailed introduction of HIGAPSO.

3.1. Improved Genetic Algorithm

Floating-point GA uses floating-point number representation for the
real variables and thus is free from binary encoding and decoding.
It takes less memory space and works faster than binary GA. Some
practical schemes to improve GA performance are introduced in this
paper. According to the optimal results, we can conclude that these
measures are effective and helpful in improving convergence property
and accuracy.

3.1.1. Nonlinear Ranking Selection

Ranking methods only require the evaluation function to map the
solutions to a partially ordered set. All individuals in a population
are ranked from best to worst based on their fitness values. It assigns
the probability of an individual based on its rank (r) and it is expressed
as follows: 


p(r) = q′(1 − q)r−1

q′ =
q

1 − (1 − q)P

(7)
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Such that

P∑
r=1

p(r) = 1 (8)

where
q = the probability of selecting the best individual = [0, 1],

r = the rank of the individual =
{

1, for the best individual
P, for the worst individual

P = the population size
It can be seen that this selection probability doesn’t use the

absolute value information of fitness value so that it avoid the fitness
value scale transformation and control the prematurity to some extent.

3.1.2. Competition and Selection

In natural biological evolution, two parents after crossover can
produce several offspring, and the competition also exists among
the offspring which are produced by the same parents. Motivate
by this phenomenon, we adopt competition and selection among
several crossover offspring. Different from the conventional algorithm
in which two parents only produce two offspring, the two parents,
chromosomes as = [xs

1 xs
2 · · · xs

n] and at =
[
xt

1 xt
2 · · · xt

n

]
,

in this algorithm will produce four chromosomes according to the
following mechanisms [24]:

b1 =
[
b11 b12 · · · b1n

]
=

as + at

2
(9)

b2 =
[
b21 b22 · · · b2n

]
= amax (1 − w) + max (as, at)w (10)

b3 =
[
b31 b32 · · · b3n

]
= amin (1 − w) + min (as, at)w (11)

b4 =
[
b41 b42 · · · b4n

]
=

(amax + amin) (1 − w) + (a1 + a2)w
2

(12)

amax = [xmax
1 xmax

2 · · · xmax
n ] (13)

amin =
[
xmin

1 xmin
2 · · · xmin

n

]
(14)
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where w ∈ [0, 1] denotes the weight to be determined by users, max(as,
at) denotes the vector with each element obtained by taking the
maximum among the corresponding element of as and at. Among
b1 to b4, the two with the largest fitness value are used as the offspring
of the crossover operation. As seen from Eqs. (9) to (12), the potential
offspring spreads over the domain. At the same time, (9) and (12)
results in searching around the center region of the domain, (10) and
(11) can move b2 and b3 to be near amax and amin respectively. Thus,
the offspring generated by this operator, is better than that obtained
by arithmetic crossover or heuristic crossover.

3.1.3. Mutation

This is the unary operator responsible for the fine tuning capabilities
of the system, so that it can escape from the trap of local optimum.
It is defined as follows: For a parent p, if variable pk was selected at
random for this mutation, the result is: p̄ = (p1 · · · p̄k · · · pn)
where

p̄k∈
{
max

(
pk−µ

pmax
k −pmin

k

2
, pmin

k

)
,min

(
pk+µ

pmax
k −pmin

k

2
, pmax

k

)}

(15)

and pmax
k , pmin

k are upper and lower bounds of pk respectively, µ
decreased with the increase of iterations.

µ(τ) = 1 − r[1−(τ/T )]b (16)

where r is uniform random number in [0, 1], T is the maximum number
of iterations, τ is the current iteration number, and b is the shape
parameter. From (16), at the initial stage of evolution, for small value
of r, µ(τ) ≈1, the mutation domain is large in this case. However,
in the later evolution, when τ approaches T , µ(τ) ≈ 0, the mutation
domain become small and search in the local domain.

3.2. Particle Swarm Algorithm

The PSO conducts searches using a population of particles which
correspond to individuals in GAs. The population of particles is
randomly generated initially. Each particle represents a potential
solution and has a position represented by a position vector &xi. A
swarm of particles moves through the problem space, with the moving
velocity of each particle represented by a position vector &vi. At each
time step, a function fi representing a quality measure is calculated by
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using &xi as input. Each particle keeps track of its own best position,
which is associated with the best fitness it has achieved so far in a vector
&pi. Furthermore, the best position among all the particles obtained so
far in the population is kept track of as &pg.

At each time step τ , by using the individual best position, &pi(τ),
and global best position, &pg(τ), a new velocity for particle i is updated
by

&vi (τ + 1) = w&vi(τ) + c1φ1 (&pi(τ) − &xi(τ)) + c2φ2 (&pg(τ) − &xi(τ))
(17)

where c1 and c2 are acceleration constants and φ1 and φ2 are uniformly
distributed random numbers in [0, 1]. The term &vi is limited to its
bounds. If the velocity violates this limit, it is set to its proper limit.
w is the inertia weight factor and in general, it is set according to the
following equation:

w = wmax −
wmax − wmin

T
· τ (18)

where wmax and wmin is maximum and minimum value of the weighting
factor respectively. T is the maximum number of iterations and τ is
the current iteration number.

Based on the updated velocities, each particle changes its position
according to the following:

&xi (τ + 1) = &xi (τ) + h (τ)&vi (τ + 1) (19)

where

h (τ) = hmax −
(hmax − h0) · τ

T
(20)

where hmax and h0 are positive constants.
According to (17) and (19), the population of particles tend to

cluster together with each particle moving in a random direction. The
computation of PSO is easy and adds only a slight computation load
when it is incorporated into IGA. Furthermore, the flexibility of PSO to
control the balance between local and global exploration of the problem
space helps to overcome premature convergence of elite strategy in
GAs, and also enhances searching ability. The global best individual is
shared by the two algorithms, which means the global best individual
can be achieved by the IGA or by PSO, also it can avoid the premature
convergence in PSO.
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3.3. Hybrid of Improved GA and PSO (HIGAPSO)

The HIGAPSO maintains the integration of IGA and PSO for the
entire run, which consists chiefly of genetic algorithm, combined with
PSO and the sequential steps of the algorithm are given below. Briefly,
the flow of key operations are illustrated in Fig. 1.

Figure 1. Flow of key operations in HIGAPSO.

Step 1: Randomly initialize the population of P individuals within
the variable constraint range.

Step 2: Calculate the fitness of the population from the fitness
function, and order ascendingly.

Step 3: The top N individuals are selected as the elites and
reproduce them directly to the next generation.

Step 4: The S individuals followed are evolved with PSO and their
best positions are updated.

Step 5: The bottom individuals are evolved with IGA and produce
P-S-N offspring.

Step 6: Combine the three parts as the new generation and
calculate the fitness of the population. Choose the best position among
all the individuals obtained so far kept as the global best.

Step 7: Repeat steps 3–6 until a stopping criterion, such as a
sufficiently good solution being discovered or a maximum number of
generations being completed, is satisfied. The best scoring individual
in the population is taken as the final answer.

4. NUMERICAL RESULTS

Three types of antenna arrays have been synthesized to verify the
effectiveness and flexibility of the proposed hybrid algorithm. In
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order to demonstrate the superiority of HIGAPSO, in each simulation,
the performance of HIGAPSO is compared with GAs and PSO. The
parameters used in GAs and PSO are selected the same as those used
in HIGAPSO, which ensure a fair comparison in computation efficiency
and solution quality.

4.1. Synthesis a circular array

We consider a circular array of 31 isotropic radiators spaced 0.5λ
apart along a circle of radius 6 wavelengths. To reduce the number
of variables, we try to use a modified Bernstein polynomial according
to Eq. (3). For a candidate set of polynomial parameters A, M , B1,
and B2, the resulting function F (U) is sampled to obtain amplitude
weights for the circular antenna to yield the maximum relative sidelobe
level equal to or below −35 dB. The proposed algorithm works to adjust
A, M , B1, and B2. Each individual has four dimensions, one for each
parameter. A, B1, and B2 are allowed to vary from zero to one, while
M may vary from one to twenty.

For design specifications, the following parameters have been
selected for the proposed algorithm: population size = 20; generations
= 300; inertia weight factor w is set by Eq. (18), where wmax = 0.9 and
wmin = 0.4; acceleration constant c1 = 2.0 and c2 = 2.0; the probability
of selecting the best individual q = 0.1; the number of elites S = 2;
crossover probability pc = 0.80; mutation probability pm = 0.02; the
percentage of population in each iteration evolved with IGA S = 0.2P .
Fig. 2(a) shows the normalized absolute power patterns in dB. Fig. 2(b)
shows the optimized distribution by HIGAPSO. It can be seen that
all of the four algorithms can obtain the desired beamform, but the
pattern obtained by HIGAPSO has a better sidelobe. From Table 1,
we can clearly see that the proposed algorithm gives a better solution
within a faster convergent speed compared with other algorithms.

Table 1. Performance comparisons for different methods of circular
array design.

Method Best fitness value Cost function evaluations

SGA 0.9279 5960

IGA 0.9281 3600

PSO 0.9281 3820

HIGAPSO 0.9282 1560
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Figure 2. (a) Radiation pattern for the circular array, (b) excitation
amplitude distributions for the circular array.

4.2. Synthesis of Amplitude-only Pattern Nulling of Linear
Antenna Array

It is well known that the broad nulls are needed when the direction
of arrival of the unwanted interference may vary slightly with time
or may not be known exactly, and where a comparatively sharp null
would require continuous steering for obtaining a reasonable value for
the signal-to-noise ratio. To illustrate the broad-band interference
suppression capability of the HIGAPSO, the pattern having a broad
null located at 47◦ with ∆θi = 5◦ is designed using a uniform linear
array of 32 isotropic elements spaced 0.5λ apart. It is desired that the
sidelobe level should be lower than −20 dB and the null depth level
should be deeper than −40 dB. The excitation amplitude distribution
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is symmetric with respect to the center of the array.
Because of symmetry, only 16 amplitudes are to be optimized. In

applying HIGAPSO, initially, 80 individuals are randomly generated
in a population. The rest parameters are the same as those in the first
example. Fig. 3(a) shows normalized absolute power pattern in dB
for the amplitude-only pattern nulling of linear antenna array. Due to
the SGA cannot obtain the desired beamform, the pattern obtained
by it is not shown. Fig. 3(b) shows common amplitude distribution
obtained by HIGAPSO. It is evident that the pattern obtained by PSO
cannot be fully satisfied the design specification, and HIGAPSO can
accurately produce the nulling pattern. It can be found from Table 2
that HIGAPSO procedure possesses the dominant speed and precision
in the optimization compared with other algorithms.

Table 2. Performance comparisons for different methods of the nulling
of linear antenna array design.

Method Best fitness value Cost function evaluations

SGA —— ——

IGA 0.2671 29760

PSO 0.2664 32800

HIGAPSO 0.2685 19440

4.3. Synthesis a Base Station Array

A base station array is synthesized in this subsection using a uniform
linear array of 16 isotropic elements with desired sidelobe level of
−20 dB or below and desired null depth level of −28 dB or below. To
realize economical and easy in engineering, we choose distance between
elements and relative phase as optimization variables.

In applying HIGAPSO, initially, 80 individuals are randomly
generated in a population. The rest parameters are the same as those
in the first example. Fig. 4(a) shows normalized absolute power pattern
in dB for the amplitude-only pattern nulling of linear antenna array.
Also, as the same reason presented above, the result of SGA is not
shown here. Fig. 4(b) shows the phase distributions in degree plotted
by line and the distance between elements plotted by line with stars for
the base station array obtained by HIGAPSO. It is clear that patterns
obtained by PSO and IGA cannot satisfy the specifications. It can
be concluded that the proposed algorithm can give optimal solution
within a faster convergent speed.
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Figure 3. (a) Radiation pattern for the nulling of linear antenna array,
(b) excitation amplitude distributions for the nulling of linear antenna
array by amplitude-only synthesis.

According to the simulation results, with the increasing
complexity of array patterns to obtain and number of variables to
optimize, PSO and IGA show their limitations and inefficiency to some
extent, respectively. While the HIGAPSO presented in this work has
better quality of solutions in all these three cases. From the maximum
sidelobe level and the null depth points of view, the performances of
the pattern are also excellent. As electromagnetic analysis often has
time-consuming cost functions, a key factor is the number of iterations
and function evaluations. From the tables above, it is obvious that
the proposed algorithm has less cost function evaluations compared
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Table 3. Performance comparisons for different methods of the base
station array design.

Method Best fitness value Cost function evaluations

SGA —— ——

IGA 0.6067 160000

PSO 0.6073 160000

HIGAPSO 0.6146 98480

-80 -60 -40 -20 0 20 40 60 80
-30

-25

-20

-15

-10

-5

0

Angle(degree)

(a)          

N
or

m
al

is
te

d 
P

ow
er

 p
at

te
rn

(d
B

)

0 2 4 6 8 10 12 14 16
0

50

100

E
xc

ita
tio

n 
P

ha
se

(d
eg

re
e)

Element Number

(b)           

0 2 4 6 8 10 12 14 16
0

0.5

1

D
is

ta
nc

e 
be

tw
ee

n 
E

le
m

en
ts

desired
HIGAPSO
IGA
PSO

Figure 4. (a) Radiation pattern for the base station array, (b)
excitation phases in degree and the distance between elements for the
base station array.
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with GAs and PSO. Hence, the efficiency of the proposed algorithm is
proved.

5. CONCLUSIONS

This paper presents a new algorithm for the beamshaping of antenna
arrays. In order to take advantage of the peculiarities of GA and PSO,
the proposed algorithm integrates the main features of them into the
optimization process. The computer simulation results show a very
good agreement between the desired and synthesized pattern. Thus,
the HIGAPSO is capable of synthesizing conformal array, linear array
with prescribed nulls and base station array with complex pattern. The
comparisons with SGA, IGA and PSO, demonstrate the superiority
of HIGAPSO in higher convergence accuracy and fewer cost function
evaluations. As the HIGAPSO has good accuracy and does not require
complicated mathematical functions, it may contribute a practical
approach for the pattern synthesis of antenna arrays in electromagnetic
analysis.
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