
Progress In Electromagnetics Research Letters, Vol. 2, 11–20, 2008

RADIATION OF A HERTZIAN DIPOLE IN A
SHORT-ENDED CONDUCTING CIRCULAR CYLINDER
WITH NARROW CIRCUMFERENTIAL SLOTS

J. S. Ock and H. J. Eom

Division of Electrical Engineering and
Radiowave Detection Research Center
Korea Advanced Institute of Science and Technology
373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Korea

Abstract—Radiation of a Hertzian dipole in a short-ended conducting
circular cylinder with narrow circumferential slots is presented. Mode-
matching and Fourier transform were utilized to derive a system of
simultaneous equations for modal coefficients. Computations were
performed to confirm the fast convergence of the series solution.

1. INTRODUCTION

Circumferentially slotted conducting circular cylinders have many
important applications in slot array antennas and EMI/EMC areas.
Scattering and radiation from circumferentially slotted circular
cylinders, excited by TE and TM modes, were considered in [1–4]
using different approaches. Hertzian-dipole radiation and scattering
from a circumferentially slotted circular cylinder of infinite length
were studied in [5, 6] using mode-matching and Fourier-transform.
The mode-matching and other similar analysis techniques were
used to analyze scattering from various slots on circular cylindrical
structures [7–9]. The Green’s function of magnetic current on a
circular cylindrical metal surface was considered in [10]. A short-
ended, circumferentially slotted circular cylinder of infinite length is
also an important structure for slotted array antenna applications.
The purpose of the present paper is to investigate radiation from
a short-ended, perfectly conducting circular cylinder with narrow
circumferential slots excited by a Hertzian dipole. The theoretical
approach in this paper is similar to that in [5], which dealt with a
circumferentially slotted conducting cylinder of infinite length. Fourier



12 Ock and Eom

transform and mode-matching techniques will be utilized to develop a
numerically efficient series solution.

1

Figure 1. Geometry of problem. inner and outer radii: a and b,
number of slots: N , width of the slot: d, distance from the top of q-th
slot to the top of 1st slot: T (q−1), wave numbers of regions (I), (II),
and (III): k1 = ω

√
µ1ε1, k2 = ω

√
µ2ε2 and k3 = ω

√
µ3ε3.

2. THEORY

Figure 1 illustrates a Hertzian dipole placed within a short-ended
hollow conducting (PEC) circular cylinder with multiple narrow
circumferential slots. We use the cylindrical coordinates (ρ, φ, z) in
the analysis. The length of the cylinder is infinite in the z-direction.
Note that the cylinder is short-ended at z = 0 and the cylindrical
region above the shorted end (0 < ρ < b and z > 0) is composed of
a PEC. Regions (I), (II), and (III) denote a circular cylinder interior
(0 < ρ < a), slotted apertures (a < ρ < b and −T (q) − h − d < z <

−T (q)−h), and an ambient medium (ρ > b), respectively. The Hertzian
dipole in region (I) is given by J̄ = ẑ J

ρ δ (ρ− ρ′) δ (φ− φ′) δ (z − z′)
where δ(·) is the Dirac delta function. The time convention e−iωt is
suppressed throughout the analysis. The field in region (I) is composed
of the incident and scattered fields. The current density J̄ in a short-
ended, perfectly conducting cylinder yields the z-component of incident
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magnetic vector potential

Ai
z(ρ, φ, z; ρ

′, φ′, z′) =
µJ

2πi

∫ ∞

0

∞∑
n=−∞


Ωn (κ1ρ

′)Jn (κ1ρ)
Jn(κ1a)

e−in(φ−φ′) cos ζz cos ζz′dζ, ρ < ρ′

Jn (κ1ρ
′) Ωn (κ1ρ)

Jn(κ1a)
e−in(φ−φ′) cos ζz cos ζz′dζ, ρ > ρ′

(1)

where Ωn (κ1ρ) = Jn(κ1ρ)H
(1)
n (κ1a) − H

(1)
n (κ1ρ)Jn(κ1a), κ1 =√

k2
1 − ζ2, and Jn(·) and H

(1)
n (·) represent the nth-order Bessel and

Hankel functions of the first kind, respectively. The scattered magnetic
and electric vector potentials in regions (I) and (III) are

AI
z(ρ, φ, z) =

2
π

∞∑
n=−∞

e−inφ

∫ ∞

0
ÃI

z(ζ)Jn(κ1ρ) cos ζzdζ (2)

F I
z (ρ, φ, z) =

2
π

∞∑
n=−∞

e−inφ

∫ ∞

0
F̃ I

z (ζ)Jn(κ1ρ) sin ζzdζ (3)

AIII
z (ρ, φ, z) =

1
2π

∞∑
n=−∞

e−inφ

∫ ∞

−∞
ÃIII

z (ζ)H(1)
n (κ3ρ)e−iζzdζ (4)

F III
z (ρ, φ, z) =

1
2π

∞∑
n=−∞

e−inφ

∫ ∞

−∞
F̃ III

z (ζ)H(1)
n (κ3ρ)e−iζzdζ (5)

where κ3 =
√

k2
3 − ζ2. We assume that the electric field within the

narrow slots has approximately an Ez component. Thus, the electric
vector potential is zero and the magnetic vector potential in region (II)
is

AII
z (ρ, φ) =

∞∑
n=−∞

R(q)
n (k2ρ)e−inφ (6)

where R(q)
n (k2ρ) = A(q)

n

Jn(k2ρ)
Jn(k2a)

+ B(q)
n

Nn(k2ρ)
Nn(k2b)

and Nn(·) is the nth-

order Bessel function of the second kind. It is necessary to enforce the
boundary conditions to find the coefficients A

(q)
n and B

(q)
n . Following

the method based on mode-matching and Fourier cosine transform
in [5] and [11], the tangential field (Ez, Eφ, Hφ) continuities at ρ = a
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yield

N−1∑
q=0

A(q)
n

[
dk2

µ2

J ′
n(k2a)

Jn(k2a)
δql +

2n2I
n(q,l)
1

πµ1a2
− 2ω2ε1I

n(q,l)
2

π

]
+

N−1∑
q=0

B(q)
n

[
dk2

µ2

N ′
n(k2a)

Nn(k2b)
δql +

2n2I
n(q,l)
1

πµ1a2

Nn(k2a)
Nn(k2b)

−2ω2ε1I
n(q,l)
2

π

Nn(k2a)
Nn(k2b)

]
=

Jeinφ′

2πi
In(l)
s (7)

where δql is the Kronecker delta. Here the symbols J ′
n(k2a)

and N ′
n(k2a) denote differentiation dJn (k2ρ) /d (k2ρ)

∣∣
ρ=a

and
dNn (k2ρ) /d (k2ρ)

∣∣
ρ=a

, respectively, and

In(l)
s =

∫ ∞

0

κ1Jn (κ1ρ
′) Ω′

n (κ1a)
Jn(κ1a)

M (l)(ζ) cos ζz′dζ (8)

I
n(q,l)
1 =

∫ ∞

0

ζ2Jn(κ1a)
κ3

1J
′
n(κ1a)

M (q)(ζ)M (l)(ζ)dζ (9)

I
n(q,l)
2 =

∫ ∞

0

J ′
n(κ1a)

κ1Jn(κ1a)
M (q)(ζ)M (l)(ζ)dζ (10)

M (q)(ζ) =
sin ζ

[
T (q) + d + h

]
− sin ζ

[
T (q) + h

]
ζ

(11)

Ω′
n (κ1a) = J ′

n(κ1a)H(1)
n (κ1a) −H(1)′

n (κ1a)Jn(κ1a) (12)

The integrals (8) ∼ (10) can be changed into fast convergent series
on the basis of residue calculus, and results are summarized in
Appendix A. The remaining boundary conditions of the tangential
field continuities at ρ = b yield another set of equations, which are
identical with (13) in [5]. The unknown coefficients A

(q)
n and B

(q)
n can

be determined by solving simultaneously (7) in this paper and (13)
in [5]. The far-field expressions in series of A

(q)
n and B

(q)
n are available

in [5].

3. COMPUTATIONS

To check the accuracy of the formulation, we compare our results
with the results of commercially available software CST MWS [12].
We assume that N slots are uniformly distributed with a period
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Figure 2. Angular radiation pattern as a function of slot number N :
a = 0.5λ, b = 0.6λ, d = 0.1λ, T = 0.5λ, h = 0, ε1 = ε2 = ε3 = ε0,
µ1 = µ2 = µ3 = µ0, λ: wavelength.

T (= T (q) − T (q−1)). Figure 2 illustrates the radiation pattern against
the elevation angle θ at φ = 0 degree when the Hertzian dipole source
is located at the center (ρ′ = 0) of a cylinder. The far field has a
dominant Eθ component. An increase in the slot number N results in
a sharpening of the beamwidth. The radiation efficiency for N = 30
is 52%. Good agreement is observed between our computed results
and the results of CST MWS except for near θ = 0 and 180 degrees.
The discrepancies near θ = 0 and 180 degrees are due to the different
assumption of cylinder length. Note that CST MWS simulation uses
a cylinder of finite length whereas our model uses a cylinder of infinite
length. The number of modes used in our computation is one (n = 0),
indicating good numerical efficiency. Figures 3(a) and (b) show the
radiation patterns against the elevation angle θ and the azimuth angle
φ, respectively, when the Hertzian dipole source is located off the
center (ρ′ = 0.4λ) of the cylinder. Good agreement with the CST
MWS results is seen in Figures 3(a) and (b) where seven modes
(n = 0,±1,±2,±3) are used in our computation. In order to further
investigate the effect of source location, the dipole source was moved
closer to the slot (ρ′ = 0.56λ) and the radiation patterns are shown in
Figures 4(a) and (b). Our results start to deviate from the CST MWS
results, particularly in Figure 4(b). The discrepancies between ours
and the CST MWS result may be due to the approximation that was
used to represent the electric fields within the narrow slots.
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(a)

(b)

Figure 3. (a) Radiation pattern against the elevation angle θ at
φ = 0◦: ρ′ = 0.4λ, φ′ = 0, z′ = −9T − 0.5d, a = 0.7λ, b = 0.8λ,
d = 0.05λ, T = 0.5λ, N = 10, ε1 = ε2 = ε3 = ε0, µ1 = µ2 = µ3 = µ0,
(b) radiation pattern against the azimuth angle φ at θ = 64◦: ρ′ = 0.4λ,
φ′ = 0, z′ = −9T − 0.5d, a = 0.7λ, b = 0.8λ, d = 0.05λ, T = 0.5λ,
N = 10, ε1 = ε2 = ε3 = ε0, µ1 = µ2 = µ3 = µ0.
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(a)

(b)

Figure 4. (a) Radiation pattern against the elevation angle θ at φ =
0◦: ρ′ = 0.56λ, φ′ = 0, z′ = −9T − 0.5d, a = 0.7λ, b = 0.8λ, d = 0.05λ,
T = 0.5λ, N = 10, ε1 = ε2 = ε3 = ε0, µ1 = µ2 = µ3 = µ0, (b) radiation
pattern against the azimuth angle φ at θ = 60◦: ρ′ = 0.56λ, φ′ = 0,
z′ = −9T − 0.5d, a = 0.7λ, b = 0.8λ, d = 0.05λ, T = 0.5λ, N = 10,
ε1 = ε2 = ε3 = ε0, µ1 = µ2 = µ3 = µ0.
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4. CONCLUSION

A theoretical formulation for radiation from a Hertzian dipole placed in
a short-ended conducting circular cylinder with narrow circumferential
slots was presented. The series solution was shown to be fast
convergent and numerically efficient. The presented solution is
applicable to the design of short-ended circular conducting cylinders
with circumferential narrow slots so long as the dipole source is not
too close to the slots (ρ′/a < 0.8).
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APPENDIX A. SERIES REPRESENTATIONS OF
INTEGRALS

In(l)
s =



∞∑
v=1

2Λ1 cos(ζvz′)eiζv(T (l)+h)
(
eiζvd − 1

)
if z′ ≥ −T (l) − h

∞∑
v=1

Λ1

[
eiζv(T (l)+h+d+z′)+e−iζv(T (l)+h+z′)

+eiζv(T (l)+h−z′)(eiζvd − 1
)]

+Λ2

if −T (l)−h−d≤z′<−T (l)−h

∞∑
v=1

Λ1

[
eiζv(T (l)+h−z′)

(
eiζvd − 1

)
−e−iζv(T (l)+h+z′) (

e−iζvd − 1
)] if z′ < −T (l) − h − d

(A1)

I
n(q,l)
1 =



∞∑
v=1

πiaJn(χ′
nv)X1 (ζ ′v)

2ζ ′v(χ′
nv)2J ′′

n(χ′
nv)

+
πiaτn

4k1 |n|
X1 (k1) if T (q) �= T (l)

∞∑
v=1

πiaJn(χ′
nv)X2 (ζ ′v)

2ζ ′v(χ′
nv)2J ′′

n(χ′
nv)

+
πiaτn

4k1 |n|
X2 (k1) otherwise

(A2)



Progress In Electromagnetics Research Letters, Vol. 2, 2008 19

I
n(q,l)
2 =



∞∑
v=1

πiX1 (ζv)
2aζ3

v

+
πi |n|
4k3

1a
X1 (k1) if T (q) �= T (l)

∞∑
v=1

πiX2 (ζv)
2aζ3

v

+
πi |n|
4k3

1a
X2 (k1) +

πdJ ′
n(k1a)

2k1Jn(k1a)
otherwise

(A3)

where τ0 = 0, τ1 = τ2 = · · · = 1, χnv and χ′
nv are the zeros of

the Bessel function of the first kind and its derivative, respectively,

ζv =
√

k2
1 − (χnv/a)2, ζ ′v =

√
k2

1 − (χ′
nv/a)2,

Λ1 = −
π(χnv)2Jn

(χnv

a
ρ′

)
Ω′

n (χnv)

2a3ζ2
vJ

′
n(χnv)

(A4)

Λ2 =
πk1Jn (k1ρ

′) Ω′
n (k1a)

2Jn(k1a)
(A5)

X1 (ζv) = eiζv(T (q)+T (l)+2h)
(
ei2ζvd − 2eiζvd + 1

)
+eiζv|T (q)−T (l)|

(
eiζvd + e−iζvd − 2

)
(A6)

X2 (ζv) = ei2ζv(T (q)+h)
(
ei2ζvd − 2eiζvd + 1

)
+ 2

(
eiζvd − 1

)
(A7)
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