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Abstract—This paper presents a comprehensive study on the hybrid
mode analysis of a periodic structure in a Suspended Microstrip
and Broadside-coupled Suspended Stripline. The analysis has been
use of Floquet’s theorem in special harmonics to express the field
equations in various sub regions of the periodic loaded suspended
substrate. Their characteristic equation is derived, using the Galerkin’s
procedure. The unknown electric field distribution in the substrate
region, corresponding to one unit cell of the periodic structure is
specified in terms of suitable basis functions. The characteristic of
slow wave properties, resonance behavior and the passband-stopband
characteristics are at the millimeter wave frequencies as a various
structural parameters are presented.

1. INTRODUCTION

Suspended Stripline and Fin Lines are the most popularly used
transmission media to realize integrated circuits in millimeter wave
bands, frequencies range from 30 GHz up to about 120 GHz. These
structures have been studied and reported as uniform transmission
lines [1–8]. Periodic transmission lines are basically slow wave
structures. They are applicable in high quality filters, high directivity
couplers, delay lines, and phase shifters. Their slow wave property
permits considerable reduction in component size which can be
exploded to realize compact millimeter wave circuit using monolithic
technology.

A hybrid mode analysis of a periodically loaded suspended
substrate is presented in present paper. Floquet’s theorem is applied to
express the field equations in various sub regions of periodic suspended
substrate. The characteristic equation is then derived, using the
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Galerkin’s procedure. The unknown electric field distribution in one
unit cell of the periodic structure is specified in terms of suitable
basis functions. Detailed characteristics of slow wave propagation,
resonance and the passband–stopband behaviors are reported at ka-
band frequencies as a various parameters of the periodic loaded
suspended substrate pattern.

(a) (b)

(c)

Figure 1. Cross-sectional views of suspended substrate line for
periodic structures. (a) suspended stripline (h1 �= h2), (b) broadside-
coupled suspended stripline, (c) periodic loaded pattern on the
substrates.

2. ANALYSIS

Consider the periodically loaded with suspended substrate as is shown
in Fig. 1. To make the analysis more simple, one symmetric half of
those coupled structures can be considered by placing an electric wall,
EW, and a magnetic wall, MW, for the odd and even mode excitation,
respectively, at the plane of the symmetry.
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Figure 2. One half of the general suspended stripline with top and
bottom walls as Electric or Magnetic walls for analysis.

The x-components of electric and magnetic fields can be driven
by the solution of Helmholtz equation in the three homogenous regions
(see Fig. 2).

E(1)
x =

∞∑
m=−∞

∞∑
n=1

Amn1 cos[γmn1(x− h1)] cos(αny)e−jβmz (1.1)

H(1)
x =

∞∑
m=−∞

∞∑
n=0

Bmn1 sin[γmn1(x− h1)] sin(αny)e−jβmz (1.2)

E(2)
x =

∞∑
m=−∞

∞∑
n=1

[Amn2sin(γmn2x)+A′
mn2cos(γmn2x)]cos(αny)e−jβmz (1.3)

H(2)
x =

∞∑
m=−∞

∞∑
n=0

[Bmn2cos(γmn2x)+B′
mn2sin(γmn2x)]sin(αny)e−jβmz (1.4)

E(3)
x =

∞∑
m=−∞

∞∑
n=1

Amn3 cos[(γmn1(x + d + h2)] sin(αny)e−jβmz (1.5)

H(3)
x =

∞∑
m=−∞

∞∑
n=0

Bmn3 cos[(γmn1(x + d + h2)] cos(αny)e−jβmz (1.6)

where the super scripts 1, 2 and 3 refer to three regions, marks in
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Fig. 2. The other parameters are:

γmn1 =
√

k2
0 − (α2

n + β2
m), γmn2 =

√
k2

0εr − (α2
n + β2

m) (2.1)

αn = (2n + 1)
π

b
, βm = β0 + 2m

π

b
(2.2)

β0 in the dominant mode propagation constant and P is the periodicity,
the y-components and z-components of the electric and the magnetic
fields can be driven by using (1) in the Maxwell’s equations.

E(1)
y =

∞∑
m=−∞

∞∑
n=0

smn1 sin[γmn1(x− h1)] sin(αny)e−jBmz (3.1)

E(2)
y =

∞∑
m=−∞

∞∑
n=0

[smn2cos(γmn2x)+S′
mn2sin(γmn2x)]sin(αny)e−jβmz (3.2)

E(3)
y =

∞∑
m=−∞

∞∑
n=0

smn3 sin[γmn1(x + d + h2)] sin(αny)e−jβmz (3.3)

E(1)
z =

∞∑
m=−∞

∞∑
n=1

Cmn1 sin[γmn1(x− h1)] cos(αny)e−jβmz (3.4)

E(2)
z =

∞∑
m=−∞

∞∑
n=1

[Cmn2cos(γmn2x)+C ′
mn2sin(γmn2x)]cos(αny)e−jβmz (3.5)

E(3)
z =

∞∑
m=−∞

∞∑
n=1

Cmn3 sin[γmn1(x + d + h2)] cos(αny)e−jβmz (3.6)

H(1)
y =

∞∑
m=−∞

∞∑
n=1

Cmn1 cos[γmn1(x− h1)] cos(αny)e−jβmz (3.7)

H(2)
y =

∞∑
m=−∞

∞∑
n=1

[Mmn2cos(γmn2x)+M ′
mn2sin(γmn2x)]cos(αny)e−jβmz (3.8)

H(3)
y =

∞∑
m=−∞

∞∑
n=1

Cmn3 sin[γmn1(x + d + h1)] cos(αny)e−jβmz (3.9)

H(1)
z =

∞∑
m=−∞

∞∑
n=0

Dmn1 cos[γmn1(x− h2)] sin(αny)e−jβmz (3.10)

H(2)
z =

∞∑
m=−∞

∞∑
n=0

[Dmn2sin(γmn2x)+D′
mn2cos(γmn2x)]sin(αny)e−jβmz (3.11)
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H(3)
z =

∞∑
m=−∞

∞∑
n=0

Cmn3 cos[γmn1(x + d + h2)] sin(αny)e−jβmz (3.12)

In the above field expressions, there are eight unknown coefficients.
Applying boundary conditions at x = 0 and x = −d, the unknown
coefficients can be reduced to only Amn1 and Bmn1.

3. DERIVATION OF CHARACTERISTIC EQUATION

By deriving the characteristic equation of the periodic structure, we
need to express the unknown coefficients in terms of the transformed
fields. We consider one unit cell of the periodic structure as shown in
Fig. 1. Applying the orthogonal condition to unit cell, we obtain,

pb [αnCmnBmn1 + βmSmnAmn1] = L2mn

[
pn(α2

n + β2
m)

]
(4.1)

pb [jβmCmnBmn1 − jαnSmnAmn1] = L1mn

[
Qn(α2

n + β2
m)

]
(4.2)

where,

L2mn =

p/2∫
−p/2

b/2∫
−b/2

Jz cos(αny)ejβmzdydz (4.3)

L1mn =

p/2∫
−p/2

b/2∫
−b/2

Jy sin(αny)ejβmzdydz (4.4)

pn =
{

1 for αn = 0
2 otherwise , Qn =

{
0 for αn = 0
2 otherwise (4.5)

Now by expressing the unknown coefficients Amn1 and Bmn1, in terms
of L2mn and L1mn we obtain,

Amn1 =
(

1
pb

)
[(βmPnL2mn − jαnQnL1mn) / (Smn)] (5.1)

Bmn1 =
(

1
pb

)
[(αnPnL2mn + jβmQnL1mn) / (Cmn)] (5.2)

By considering E
(1)
y and E

(1)
z at x = 0 and substitute the value of Amn1

and Bmn1, and applying the Galerkin’s method in transformed domain,
and then eliminate the electric field, the following set of homogenous
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equations can be obtained.
∞∑

i=−∞

∞∑
j=1

cij

∞∑
m=−∞

∞∑
n=1

QnG11L
(i,j)
1mnL

(k,l)
1mn

+
∞∑

i=−∞

∞∑
j=1

dij

∞∑
m=−∞

∞∑
n=1

PnG12L
(i,j)
2mnL

(k,l)
1mn = 0 (6.1)

∞∑
i=−∞

∞∑
j=1

cij

∞∑
m=−∞

∞∑
n=1

QnG21L
(i,j)
1mnL

(k,l)
2mn

+
∞∑

i=−∞

∞∑
j=1

dij

∞∑
m=−∞

∞∑
n=1

PnG22L
(i,j)
2mnL

(k,l)
2mn = 0 (6.2)

where,

k = −∞ to + ∞; l = 1, 2, 3, . . . ,+∞ (6.3)

L
(k,l)
2mn =

p/2∫
−p/2

b∫
0

e(k,l)
y (y, z) cos(αny)e−jβmzdydz (7.1)

L
(k,l)
1mn =

p/2∫
−p/2

b∫
0

e(k,l)
z (y, z) sin(αny)e−jβmzdydz (7.2)

G11 = − sin (γmn1h1)
(
jβ2

mγmn1

Smn
− jwµ0α

2
m

Cmn

)
/
(
α2

n + β2
m

)
(8.1)

G12 = − sin (γmn1h1)
(
αnβmγmn1

Smn
−wµ0αnβm

Cmn

)
/
(
α2

n + β2
m

)
(8.2)

G21 = −G12 (8.3)

G22 = − sin (γmn1h1)
(
jα2

nγmn1

Smn
− jβ2

mwµ0

Cmn

)
/
(
α2

n + β2
m

)
(8.4)

To analysis the periodically loaded suspended substrate line, with
bottom wall replaced by magnetic wall in Fig. 2 and considering
any periodic strips conductor pattern, we note that the solution
of Helmholtz equation in regions 1 and 2 is identical to that of
the suspended structure. But for region 3, the x-dependent terms
represented by “sin”, is replaced by “cos” and vice-versa. The same
procedures for field equations in the three regions has been followed,
and finally by applying Galerkin’s method in transformed domain,
we obtained the same characteristic equation in the form of a set of
homogenous equations (6).
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4. FIELD DISTRIBUTION

Referring to the strip conductor pattern, shown in Fig. 2, the basis
function strip current distribution in one unit cell of the periodic
structure are,

ez(y, z) = 0 (9.1)

ey(y, z) = C01e
a
y(y, z) + C−11e

b
y(y, z) (9.2)

ea
y(y, z) = ea

y(y)e
a
y(z) =

[
1 +

∣∣∣∣ 1
w

{
y − 2s1

(
b− y

b− w

)}∣∣∣∣
3
]
U(z)e−jβ0z,

s1 < y < s1 + w (9.3)

eb
y(y, z) = eb

y(y)e
b
y(z) =

[
1 +

∣∣∣∣ 1
w

{
y − 2s1

(
b− y

b− w

)}∣∣∣∣
3
]
U(z)e−jβ−1z,

s1 < y < s1 + w (9.4)

where:

ea
y(y) = eb

y(y) =

[
1 +

∣∣∣∣ 1
w

{
y − 2s1

(
b− y

b− w

)}∣∣∣∣
3
]

= ey(y) (9.5)

ea
y(z) = U(z)e−jB0z (9.6)

eyb(z) = U(z)e−jβ−1z (9.7)

U(z) =

{ 1 s < |z| < p/2

0 |z| < s
(9.8)

β−1 =
(
β0 −

2π
p

)
(9.9)

where ea
y(y, z) and eb

y(y, z) are the basis functions corresponding to the
dominant mode and the first special harmonic, respectively, and C01,
C−11 are unknown coefficients.

5. NUMERICAL RESULTS

The propagation constants of the structure for the dominate and higher
order harmonics are determined by substituting the transformed basis
functions for the strip conductor field in the characteristic equation (6)
and setting the determinant of the coefficient matrix equal to zero.
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for dominant mode of uniform suspended stripline 

for higher order mode of uniform suspended stripline 

--------

Figure 3. k0 − β0 diagram of suspended stripline periodically loaded
with series capacitive gaps.

Figure 3 illustrates a typical k0 − β0 diagram. The first passband
occurs in the frequency range when k0P satisfy 2.4413 < k0P < 2.7451
and first stopband occurs in the range of 2.7451 < k0P < 5.1913 which
demonstrating very narrow passband and wide stopband the curve
for the periodically loaded suspended stripline is above that for the
uniform suspended stripline because of the capacitive reactance of the
series gaps and the higher passband curves (k0 − β0) of the periodic
structure is above that of the uniform line for the higher order mode.
Thus, the higher passbands and stopbands are not of much significance.
Fig. 4 shows the variation in the stopbandwidth as a function of
gap width 2s for two different value of stripwidth (w = 1 mm and
w = 2 mm). The periodicity is held fixed at P = 4 mm. Thus as 2s
is increased, the strip conductor length l decreases. Consequently, the
resonant frequency frL increases. Fig. 4 also shows that an increase in
2s from 0.5 mm to 2 mm, frL increases where as the stopband width
remains wide and fairly constant.

Figure 5 shows the variation in the effective dielectric constant as
a function of frequency for different combinations of w, 2s and P . It
also illustrates similar graph for different combinations of h1 and h2.
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Figure 4. Effect of capacitive gap loading on the upper and lower
frequency bounds (frU and frL) of the first stopband in suspended
stripline periodically loaded with series capacitive gaps.

Figure 5. Dispersion of suspended stripline periodically loaded with
series capacitive gaps for different combination of w, 2s and P .
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Figure 6. Dispersion of suspended stripline periodically loaded with
series capacitive gaps for different combination of h1 and h2.

Each curves in these figures corresponds to passband filter response.
The frequencies corresponding to εeff = 0 give the cutoff frequencies
and can be read from the horizontal axis. Also from Fig. 6, the curves
marked a, b and d which are for 2s/w = 0.1 shows extremely narrow
passband and curves c and e which are for lower value of 2s/w = 0.05
show wider passband, curve c is for P = 4 mm and curve e is for
P = 3 mm. As expected, reducing the periodicity has the effect of
shifting the passband to higher frequency.

In Fig. 5, with 2s/w = 0.05 and P = 4 mm we consider the
effect of varying the air gap h1 (in which h2 = a − (d + h1), a and
d are fixed) on the dispersion characteristics, when in curve a, h2 = 0
(microstrip) and curve f when the strip conductor in extremely close
to the topwall (h1 = 0.1 mm) very narrow passband results, where the
strip conductor pattern is in close proximity to the bottom or top wall.
Furthermore, the passband response shifts towards higher frequency,
and curves b, c, d and e which show larger passband, refer to cases
for which the strip conductor pattern in sufficiently away from the
top and bottom walls. Curve d refers to the symmetric suspended
stripline (h1 = h2 = 0.7 mm). Lowering the substrate from the centre
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for dominant mode of uniform suspended stripline 

for higher order mode of uniform suspended stripline 

--------

Figure 7. k0 − β0 diagram of broadside-coupled suspended stripline
periodically loaded with series capacitive gaps.

by 0.2 mm (i.e., h2 = 0.5 mm) has practically no effect on dispersion
characteristic.

The nature of k0 − β0 diagram in broadside-coupled suspended
stripline periodically loaded with series capacitive gaps with even mode
excitation which is showing in Fig. 7, is similar to that of Fig. 3. The
fact that the first passband starts from a finite value of k0P not zero,
is characteristic of the periodic pattern.

The effect of series gap loaded as shown in Fig. 8, we observe that
the stopband width which is initially zero for 2s = 0 (uniform line)
increases first with an increase in 2s and then decrease with fixing
periodicity an increase in 2s, both frU and frL increase, and beyond
a certain value of 2s, which frL continuous to increase, frU saturates
thereby reducing the stopband width. For a sufficiently large value of
2s when the adjacent strip conductors get increasing by decoupled frL

approaches the value of frU .
Figure 9 illustrates the dominant mode passband resonance.

Curves c and d which are for wider strips (w = 2 mm) show the similar
slope. The curves a and b which are for narrower strips (w = 1 mm).
These curves in conjunction with the k0 − β0 diagram (Fig. 7) shows



154 Fardis and Khosravi

Figure 8. Effect of series gap loading on the upper and lower frequency
bounds of the first stopband in broadside-coupled suspended stripline
periodically loaded with series capacitive gaps.

Figure 9. Dispersion of broadside-coupled stripline periodically
loaded with series capacitive gaps.
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that with wider strips, the width of first passband increase and that
of first stopband decreases. Over the practical passband range, εeff

has a value in the range of 0.0 to 1.5. Therefore this type of periodic
configuration is no useful as a slow wave structure.

6. CONCLUSIONS

The suspended stripline with periodically loaded capacitive gaps is
characterized by a lower cut-off frequency fc for the first passband
(Fig. 3). The structure offers very narrow passband and wide stopband,
particularly when the strip pattern is in close proximity to either the
bottom or topwall. In Figs. 5 and 6 the wider passband can be achieved
by positioning strip conductor pattern at or close to the centre of the
quide (curves b, c, d and e in Fig. 5 with εr = 2.22; the maximum
value of εeff is less than about 1.5).

The characteristics of periodic broadside-coupled suspended
stripline with the different periodic patterns are similar to the
characteristic of the corresponding periodic structure in single
conductor suspended stripline with symmetrically located substrate, in
which the structure has a lower cut-off frequency, fc, narrow passband,
wide stopband and εr in an approximate range 0 ≤ εeff ≤ 1.5 with
patterns.
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