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Abstract—Generally all Magnetic Resonance Imaging (MRI) tech-
niques are affected by magnetic and electric properties of measured
materials, resulting in errors in MR image. Using numerical simula-
tion we can solve the effect of changes in homogeneity of static and
RF magnetic fields caused by specimen made from conductive and/or
magnetic material in MR tomograph. This paper deals with numerical
simulation of material susceptibility influence to magnetic field.

1. INTRODUCTION

In MR tomography, strong magnetic field is used (above 1 T). Because
MR is very sensitive to inhomogeneity of this field, even such weak
induced magnetic field as from para- or diamagnetic material is
significant. Second mechanism, which affects field homogeneity, is
magnetic field off eddy current induced by RF impulse in conductive
material. Aim of this paper is in simulation of weakly magnetic
material influence to static magnetic field.

For numerical simulation, two approaches can be used: normal
Finite Element Method (FEM) and calculation of reaction field
considering the induced polarity in the region. These approaches have
been discussed in [6] and [7], where the accuracy consideration and
possible reduction of numerical method errors can be found. Using
FEM for calculation of magnetic field in MR tomography requires
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double precision arithmetic and sufficiently fine mesh, because change
of the magnetic field in vicinity of slightly magnetic materials is weak
in comparison to basic static magnetic field. Second approach may use
single precision arithmetic, because only reactional field (induced own
field of magnetic material) is computed.

2. 2D ANALYTIC SOLUTION

Let’s have specimen with susceptibility χm1 surrounded by reference
medium with known susceptibility χm2 and placed into static primal
magnetic field with magnetic intensity vector H0 oriented in uz

direction — see Fig. 1 left. We have to determine magnetic intensity
H of incurred field, which is superposition of primal and reaction field
Hr (effect of specimen magnetization).
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Figure 1. 2D analytic model for rectangular specimen (left),
replacement of specimen magnetization effect by surface magnetic
charge at the area boundaries (right) and boundary detail (middle).

Because there are not variable currents in whole area, magnetic
field is irrotational (rot H = 0) and we can use scalar magnetic potential

H = −gradϕm. (1)

Magnetic potential of primal field of intensity H0 is

ϕm0 = −
∫

H0 · uzdz = −H0z. (2)

Incidence of magnetized specimen from Fig. 1 left we can replace
with effect of field of surface magnetic charge with density σm on
boundary of areas Ω1 a Ω2 — see Fig. 1 right, whereas susceptibility of
areas is now zero. First we have to compute magnetic charge density
distribution on bound Γ and consequently the intensity of reaction field
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∆H = H − H0

∆H(r) =
1
2π

∮

Γ

σm(r′)
ur

R(r, r′)
dΓ. (3)

Surface magnetic charge invokes scalar magnetic potential [5]

ϕmr(r) = − 1
2π

∮

Γ

σm(r′) lnR(r, r′)dΓ. (4)

Total scalar magnetic potential at point r is superposition of static
primal field intensity (2) and contribution from charged bound (4)

ϕm(r) = −Hz − 1
2π

∮

Γ

σm(r′) lnR(r, r′)dΓ. (5)

Using condition of magnetic flux Bn = Bnun we obtain an
integral formula for surface magnetic charge density normal component
conjunction on bound Γ (see Fig. 1 middle)

Bn = µ0(1 + χm1)H1n = µ0(1 + χm2)H2n (6)

Analogically to the Gauss theorem causes magnetic charge of
density σm at point A magnetic field of intensity

∆Hn = ±σm(A)
2

. (7)

Using (5) and (1) we have the normal components of magnetic
field intensity at point A (Fig. 1 middle)

H1n = H0uzun +
1
2π

grad
∮

Γ, r∈Ω1

σm
(
r′

)
lnR(r, r′)dΓun, (8)

H2n = H0uzun +
1
2π

grad
∮

Γ, r∈Ω1

σm
(
r′

)
lnR(r, r′)dΓun. (9)

Whenever A ∈ Γ and thus r ∈ Γ, has integral in formulas (8) a (9)
singularity at point A (where r = r′). We can remove this singularity
omitting point r = r′ from integration and taking field contribution of
this point using (7) instead. So we can write

H1n = H0uz · un +
1
2π

∮

Γ

r �=r′

σm
(
r′

) 1
R(r, r′)

dΓuR · un − σm(A)
2

, (10)
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H2n = H0uz · un +
1
2π

∮

Γ

r �=r′

σm
(
r′

) 1
R(r, r′)

dΓuR · un +
σm(A)

2
, (11)

where was used

grad lnR(r, r′) =
1

R(r, r′)
uR. (12)

Substituting from (10) and (11) into (6) we have after some
rearrangement

χ∆

2π

∮

Γ

r∈Γ, r�=r′

σm (r′)
R (r, r′)

dΓuR · un +
σm(r)

2
= −χ∆H0uz · un, (13)

where differential susceptibility was introduced

χ∆ =
χm1 − χm2

χm1 + χm2 + 2
. (14)

Formula (13) is not analytically solvable, thus we solve it
numerically by mean of boundary element method. After solution
of (13) using collocation method described in [5] we have obtained
results, shown in next figure. Shape of magnetic flux density is in the
Fig. 2. In this simulation the aluminium specimen (Ω1) was considered
with χm1 = 22 · 10−6, length of specimen z = 20 mm, thickness
a= (3, 5 and 7) mm. Specimen was immersed into the water with
χm2 = −9 · 10−6 − (Ω2).
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Figure 2. Result of numerical solution-magnetic flux density obtained
by collocation method.
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3. 3D NUMERICAL SOLUTION

Three dimensional numerical modeling was provided using FEM and
Ansys software. The scalar magnetic potential was computed by
solving of Laplace’s equation

∆ϕm = divµ (−gradϕm) = 0. (15)

One of used model is in Fig. 3. Here weakly paramagnetic
specimen is surrounded by diamagnetic reference substance. The
model was meshed with Solid96 element type. Boundary conditions
were set up to achieve induction B0 = 4,700 T in z-axes direction:
ϕm = const. on the surfaces Γ1, Γ2, ∂ϕm

∂n = 0 on the shell surface Γ3.
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Figure 3. FEM model (left) and compute result (right) for magnetic
flux density.

FEM modeling and solution is described in [8]. One of obtained
results — the module of magnetic induction B along the “path” marked
in Fig. 3 — is shown in the figure in the right.

4. CONCLUSIONS

Both method of numerical modeling of magnetic field deformation
in MRI, caused by weakly magnetic specimen, which were described
here, was compared with experimental results [3, 8]. Proximity of
measured and numerically modeled data was good — see [5]. To
enable comparison, simulation was adjusted to the same conditions
as experiment: size of sample, susceptibilities and magnetic field of
B = 4.7 T.

Based on this simulation, MR measuring technique was
founded [8], which is suitable for substances with no signal in MR
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tomography. The method uses Gradient Echo (GE) method and
benefits from magnetic induction field shape in specimen vicinity,
which is immersed in reference medium with measurable MR signal.
After an optimization this method can be used for investigation of
the materials used in MR tomography as well as of biological tissues
affecting quality of MR images.
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