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Abstract—A new method is introduced to analyze lossy Inhomoge-
neous Planar Layers (IPLs) for both TE and TM polarizations in this
paper. The IPLs are subdivided into several thin linear layers instead
of uniform ones. The chain parameter matrix of linear layers is ob-
tained by expressing the electric and magnetic fields in power series
expansion. This method is applicable to all arbitrary lossy IPLs. The
accuracy of the proposed method is verified using a comprehensive
example.

1. INTRODUCTION

Inhomogeneous Planar Layers (IPLs) are widely used in electromag-
netics as optimum shields, filters and etc. Also, the IPLs potentially
provide less scattering, less stress, larger bandwidth and better cou-
pling effects than homogeneous planar layers [1–6]. The differential
equations describing IPLs have non-constant coefficients and so except
for a few special cases no analytical solution exists for them. There are
some methods to analyze the IPLs such as finite difference [7], Tay-
lor’s series expansion [8], Fourier series expansion [9], the method of
Moments [10] and the equivalent sources [11]. Of course, the conven-
tional and most straightforward method is subdividing IPLs into many
thin uniform (homogeneous) layers [1]. In this paper, the conventional
method is modified by subdividing IPLs into many thin linear layers
instead of uniform ones. In the proposed method, the primary param-
eters of IPLs are assumed to vary linearly between two ends of the thin
layers. Also, the distribution of the electric and magnetic fields along
the layers are expanded in power series and their unknown coefficients
are related to each other by some recursive relations. This method is
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applicable to all arbitrary IPLs. The accuracy of the proposed method
is studied using a comprehensive example.

2. THE EQUATIONS OF IPLS

Figure 1 shows a typical IPL of thickness d, whose left medium is
the air and whose right medium is arbitrary such as the air or perfect
conductor. Two different polarizations are possible, i.e., TM and TE. It
is assumed that the incident plane wave propagates obliquely towards
positive x and z direction with an angle of incidence θi and electric
filed strength Ei.

(a)  (b) 

Figure 1. Incident plane wave to IPL structure. (a) TE polarization
mode (b) TM polarization mode.

The transverse electric and magnetic fields on the surface
z = const. are defined as follows

Et(z) �
{

Ey(z); TE
Ex(z); TM (1)

Ht(z) �
{
−Hx(z); TE
Hy(z); TM (2)

The differential equations describing lossy IPLs are given by

dEt(z)
dz

= −Z(z)Ht(z) (3)

dHt(z)
dz

= −Y (z)Et(z) (4)

In (3)–(4), two following primary parameters have been defined

Z(z) �




jωµ0µr(z), TE

jωµ0µr(z) +
k2

x

σ(z) + jωε0εr(z)
, TM (5)
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Y (z) �


 σ(z) + jωε0εr(z) − j

k2
x

ωµ0µr(z)
, TE

σ(z) + jωε0εr(z), TM
(6)

where kx is the wavenumber for the x direction

kx =
ω

c
sin (θi) (7)

in which c is the velocity of the light and ω is the excitation angular
frequency. Furthermore, there are two boundary conditions as follows

Et(0) + ZSHt(0) =
{

2Ei, TE
2Ei cos(θi), TM (8)

Et(d) = ZLHt(d) (9)

where

ZS =




√
µ0

ε0

1
cos(θi)

, TE√
µ0

ε0
cos(θi), TM

(10)

Also, ZL = ZS or ZL = 0 for when the right medium is the air or
perfect conductor, respectively.

3. LINEAR APPROXIMATION

In this section, the analysis of IPLs using linear approximation is
introduced. It is assumed that the primary parameters of IPLs could
be expressed by a linear approximation as follows

Z(z) ∼= Z(0) + (Z(d) − Z(0))(z/d) = Z0 + Z1(z/d) (11)
Y (z) ∼= Y (0) + (Y (d) − Y (0))(z/d) = Y0 + Y1(z/d) (12)

Also, we can consider the electric and magnetic fields in power series
as follows

Et(z) =
∞∑

n=0

En(z/d)n (13)

Ht(z) =
∞∑

n=0

Hn(z/d)n (14)
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where the coefficients En and Hn are unknown coefficients. Using
(11)–(14) in (3)–(4), the following relations are obtained.

∞∑
n=0

(n+1)En+1(z/d)n=−d
∞∑

k=0

(
Z0Hk(z/d)k+Z1Hk(z/d)k+1

)
(15)

∞∑
n=0

(n+1)Hn+1(z/d)n=−d
∞∑

k=0

(
Y0Ek(z/d)k+Y1Ek(z/d)k+1

)
(16)

Equating the coefficients of the same power terms in two sides of (15)–
(16), gives us the following recursive relations for n = 0, 1, 2, . . .

En+1 = − d

n + 1
(Z0Hn + Z1Hn−1) (17)

Hn+1 = − d

n + 1
(Y0En + Y1En−1) (18)

Indeed, all unknown coefficients are only dependent to two coefficients
E0 and H0. For example, some of these coefficients are obtained as
follows

E1 = −dZ0H0 (19)
H1 = −dY0E0 (20)

E2 =
d2

2
Z0Y0E0 (21)

H2 =
d2

2
Y0Z0H0 −

d

2
Y1E0 (22)

E3 =
d2

6
Z0Y1E0 −

d3

6
Z2

0Y0H0 (23)

H3 =
d2

3
Y1Z0H0 −

d3

6
Y 2

0 Z0E0 (24)

E4 =
d4

24
(Z0Y0)2E0 −

d3

12
Z2

0Y1H0 (25)

H4 =
d4

24
(Y0Z0)2H0 −

d3

6
Y1Z0Y0E0 (26)

Finally, we can find the chain parameter matrix of IPLs as follows

[
Et(d)
Ht(d)

]
=




∞∑
n=0

En

∞∑
n=0

Hn


 = Φ

[
Et(0)
Ht(0)

]
= Φ

[
E0

H0

]
(27)
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Substituting the obtained coefficients En and Hn in (27) and after
some mathematical manipulations, one can obtain the chain parameter
matrix of IPLs as follows

Φ = Φunif + ∆Φ (28)

where

Φunif=




1 +
∞∑

n=1

d2n

(2n)!
(Z0Y0)n −

(
d +

∞∑
n=1

d2n+1

(2n+1)!
(Z0Y0)n

)
Z0

−
(
d+

∞∑
n=1

d2n+1

(2n+1)!
(Y0Z0)n

)
Y0 1 +

∞∑
n=1

d2n

(2n)!
(Y0Z0)n




= exp
(
−

[
0 Z0d

Y0d 0

])
(29)

is the chain parameter matrix of uniform (homogeneous) planar layers
assuming Z(z) = Z0 and Y (z) = Y0, [1]. The matrix ∆Φ in (28) is
written as follows, ignoring the terms with power greater than three
for d.

∆Φ∼=
[

d2
(

1
3Z1Y0 + 1

6Z0Y1 + 1
8Z1Y1

)
−1

2dY1−d3
(

1
6Y1Z0Y0+ 1

12Y 2
0 Z1+ 11

120Y1Z1Y0+ 1
30Y 2

1 Z0+ 1
48Y1Z1Y1

)
−1

2dZ1−d3
(

1
6Z1Y0Z0+ 1

12Z2
0Y1+ 11

120Z1Y1Z0+ 1
30Z2

1Y0+ 1
48Z1Y1Z1

)
d2

(
1
3Y1Z0 + 1

6Y0Z1 + 1
8Y1Z1

)
]

(30)

Also, the matrix ∆Φ is written as follows, ignoring the terms with
power greater than four for d, assuming Z1 = 0.

∆Φ ∼=
[

1
6d2Z0Y1 + d4

(
1
30Z2

0Y1Y0 + 1
180Z2

0Y 2
1

)
−1

2dY1 − d3
(

1
6Y1Z0Y0 + 1

30Y 2
1 Z0

)
− 1

12d3Z2
0Y1

1
3d2Y1Z0 + d4

(
1
20Z2

0Y1Y0 + 1
72Z2

0Y 2
1

)
]

(31)

We expect that the added matrix ∆Φ in (28) can modify the
conventional method of analyzing of IPLs. To analyze IPLs, we can
subdivide them into K linear layers whose chain parameter matrix can
be expressed using (28)–(31) but substituting ∆z = d/K instead of
d. In this way, the chain parameter matrix corresponding to two ends
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of IPL can be written as the multiplication of the chain parameter
matrices of all layers. Then, one can obtain the electric and magnetic
fields at two ends of each layer using the chain parameter matrix of
two ends of IPL and the boundary conditions (8)–(9). It is worth to
mention that we can also determine the electric and magnetic fields at
any point located between two ends of each layer using the relations
(13)–(14) and after knowing the electric and magnetic fields at two
ends of all layers. Moreover, the chain parameter matrix can be used
to find the reflection and the transmission coefficients as follows

Γin =
{

Et(0)/Ei − 1, TE
Et(0)/(Ei cos(θi)) − 1, TM

=
− (ZSΦ(1, 1) + Φ(1, 2)) + (Φ(2, 2) + ZSΦ(2, 1))ZL

(ZSΦ(1, 1) − Φ(1, 2)) + (Φ(2, 2) − ZSΦ(2, 1))ZL
(32)

T =
{

Et(d)/Ei, TE
Et(d)/(Ei cos(θi)), TM

=
2ZL

(ZSΦ(1, 1) − Φ(1, 2)) + (Φ(2, 2) − ZSΦ(2, 1))ZL
(33)

4. EXAMPLE AND RESULTS

In this section, a comprehensive example is presented to study the
validity of the introduced method. Consider an exponential IPL with
the following primary parameters

µr(z) = µr0 (34)
εr(z) = εr0 exp(kz/d) (35)
σ(z) = 0 (36)

Now, assume that εr0 = 4, µr0 = 1, d = 10 cm and k = 1. A
plane wave with TE polarization, the angle of incidence θi = 45◦,
the electric field strength Ei = 1.0 V/m and the excitation frequency
1.0 GHz is illuminated to the considered structure. Figs. 2–3, compare
the amplitude and phase of the electric field obtained from the
exact solution [7, 8] and from the introduced and the conventional
methods with K = 10 linear and uniform layers. One sees an
excellent agreement between the results obtained from the introduced
method with the exact ones. Also, Figs. 4–5 show the relative
error corresponding to the reflection and transmission coefficients for
the methods of cascading K uniform and linear layers versus K, at
frequencies 1.0 and 10.0 GHz. It is seen that the accuracy of cascading
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Figure 2. The amplitude of the electric field distribution at frequency
1.0 GHz.

Figure 3. The phase of the electric field distribution at frequency
1.0 GHz.
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Figure 4. The relative error of the obtained reflection coefficient.

Figure 5. The relative error of the obtained transmission coefficients.

linear layers is very more than that of cascading uniform layers.
Furthermore, if one considers more terms in (30) or (31) the accuracy
of the cascading linear layers will be increased, certainly. According
to this example, one may be satisfied about the modification of the
introduced method. Also, it is obvious that the introduce method is
applicable to arbitrary lossy IPLs.
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5. CONCLUSION

A new method was introduced to frequency domain analyze arbitrary
Inhomogeneous Planar Layers (IPLs). The IPLs are subdivided into
several thin linear layers instead of uniform ones. The chain parameter
matrix of linear layers is obtained by expressing the electric and
magnetic fields by power series expansion. The validity of the proposed
method was verified using a comprehensive example. It was seen that
the accuracy of cascading linear layers is more than that of cascading
uniform layers.

REFERENCES

1. Richmond, J. H., “Transmission through inhomogeneous plane
layers,” IRE Trans. Antennas Propag., 300–305, May 1962.

2. Sossi, L., “A method for the synthesis of multilayer dielectric
interference coatings,” Izv, Akad. Nauk Est. SSSR Fiz. Mat.,
Vol. 23, No. 3, 223–237, 1974.

3. Urbani, F., L. Vegni, and A. Toscano, “Inhomogeneous layered
planar structures: An analysis of the reflection coefficients,” IEEE
Trans. Magn., 2771–2774, Sep. 1998.

4. Bilotti, F., A. Toscano, and L. Vegni, “Very fast design formulas
for microwave nonhomogeneous media filters,” Microw. Opt. Tech.
Letters, 218–221, 1999.

5. Vegni, L. and A. Toscano, “Full-wave analysis of planar stratified
with inhomogeneous layers,” IEEE Trans. Antennas Propag.,
Vol. 48, No. 4, 631–633, Apr. 2000.

6. Toscano, A., L. Vegni, and F. Bilotti, “A new efficient method
of analysis for inhomogeneous media shields and filters,” IEEE
Trans. Electromagn. Compat., Vol. 43, No. 3, 394–399, Aug. 2001.

7. Khalaj-Amirhosseini, M., “Analysis of lossy inhomogeneous
planar layers using finite difference method,” Progress In
Electromagnetics Research, PIER 59, 187–198, 2006.

8. Khalaj-Amirhosseini, M., “Analysis of lossy inhomogeneous
planar layers using Taylor’s series expansion,” IEEE Trans.
Antennas and Propagation, Vol. 54, No. 1, 130–135, Jan. 2006.

9. Khalaj-Amirhosseini, M., “Analysis of lossy inhomogeneous
planar layers using fourier series expansion,” IEEE Trans.
Antennas and Propagation, Vol. 55, No. 2, 489–493, Feb. 2007.



104 Khalaj-Amirhosseini

10. Khalaj-Amirhosseini, M., “Analysis of lossy inhomogeneous
planar layers using the method of moments,” Journal of
Electromagnetic Waves and Applications, Vol. 21, No. 14, 1925–
1937, 2007.

11. Khalaj-Amirhosseini, M., “Analysis of lossy inhomogeneous
planar layers using equivalent sources method,” Progress In
Electromagnetics Research, PIER 72, 61–73, 2007.


