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Abstract—In this paper, the extension of the Contiguous Partition
Method (CPM) from linear to planar arrays is described and assessed.
By exploiting some properties of the solution space, the generation of
compromise sum-difference patterns is obtained through an optimal
excitation matching procedure based on a combinatorial method. The
searching of the solution is carried out thanks to an efficient path-
searching algorithm aimed at exploring the solution space represented
in terms of a graph. A set of representative results are reported for the
assessment as well as for comparison purposes.

1. INTRODUCTION

In antenna design, the optimal synthesis of sum and difference patterns
is a classical problem. In such a framework, the synthesis of array
antennas able to generate both a sum pattern and a difference one has
received some attention because of their applications in radar searching
and tracking [1, 2]. Since exact methods of synthesizing independently
optimum sum and difference arrays exist for both linear [3–6] and
planar architectures [7, 8], whether the complexity and cost of the
arising feed networks are affordable, then the above methods can be
directly used. However, since the implementation of two (or three)
totally independent signal feeds is generally expensive and complex,
a number of alternative solutions have been proposed to generate the
two or three required patterns via shared feed networks at the cost of
a reduction in the quality of one or more patterns [2, 9].
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In order to avoid the need of a completely different feeding
(receiving) network for each operation mode, several researches [10–
15] proposed to partition the original array in sub-arrays. In such a
scheme, the feeding network is usually devoted to the optimization
of the sum channel, so that the excitations of the arrays elements for
such a mode correspond to the optimal one (e.g., Dolph-Chebyshev [3]).
Then, the difference mode is obtained thanks to a suitable choice of
the weight of each sub-array. Consequently, a large part of the whole
architecture is common to both modes with a non negligible saving of
costs. On the other hand, a compromise difference pattern is obtained.
The degree of optimality of the compromise solution is related to the
number of sub-arrays, which establishes a trade-off between costs and
performances. As a matter of fact, a large number of sub-arrays allows
better performances, but also implies higher costs. Otherwise, few sub-
arrays may imply unacceptable difference patterns. For a fixed number
of sub-arrays, once the excitations of the sum pattern have been fixed,
the problem is concerned with the grouping of the array elements into
sub-arrays and the computation of their weights to determine the best
compromise difference pattern.

As far as the number of unknowns is concerned, it grows
proportionally to the dimension of the array and, usually, it turns out
to be very large when real applications of planar arrays are considered.
Consequently, a standard use of global optimization techniques is not
convenient since a suboptimal solution is generally obtained in the
limited time one has at his disposal. As a matter of fact, the arising
computational burden raises very rapidly with the dimension of the
solution space. Although this circumstance is quite underestimated
in antenna design since synthesis problems may have many different
satisfactory suboptimal solutions, nevertheless they can be significantly
worse than the global ones.

In order to overcome such drawbacks, in Ares et al. [11] the
antenna aperture has been divided into four quadrants and the
monopulse function has been obtained by combining the outputs in
a monopulse comparator. The sum pattern and the difference one
have been generated with all quadrants added in phase and with
pairs of quadrants added in phase reversal, respectively. Moreover, in
order to reduce the number of unknowns, each antenna quadrant has
been a-priori divided into sub-arrays (i.e., the sectors) and only the
sub-array weights have been calculated by minimizing a suitable cost
function again according to a Simulated Annealing (SA) algorithm.
In an alternative fashion, D’Urso et al. [14] formulated the problem
in such a way that global optimization tools have to deal with a
reduced number of unknowns. By exploiting the convexity of the cost
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functional to be minimized with respect to a part of the unknowns
(i.e., the sub-array gains), a hybrid two-step optimization strategy has
been applied instead of simultaneously optimizing (in the same way)
both the involved variables. As a matter of fact, once the clustering
into sub-arrays has been determined by using a SA technique, the
problem at hand gives rise to a Convex Programming (CP ) problem
with a single minimum that can be retrieved with a local optimization
technique. Unfortunately, although unlike [11] no a-priori information
are necessary, the evaluation of the auxiliary CP objective function
is usually more cumbersome than the original cost function. Such an
event could result in an excessively large computational burden that
would prevent the retrieval of the global optimum in the available
amount of time or to efficiently deal with large planar arrays.

In [15], a computationally-effective method, namely the Contigu-
ous Partition Method (CPM), for the optimal compromise among sum
and difference patterns has been proposed to deal with linear arrays.
The optimization problem has been recast as a combinatorial one, thus
significantly reducing the dimension of the solution space and allow-
ing a fast synthesis process. Because of its computational efficiency,
such a technique seems to be a good candidate to deal also with two-
dimensional (2D) arrays in order to overcome the computational draw-
backs of stochastic optimization methodologies. Towards this end, a
suitable implementation (not a simple extension) is mandatory to keep
also in the planar case the best features of the linear approach both in
term of reliability and computational efficiency. As a matter of fact,
unlike the linear case, the planar structure requires two difference pat-
terns (i.e., the difference E-mode and the H-mode). Moreover, the
dimensionality of the problem at hand significantly grows with respect
to the linear situation, thus enhancing the computational problems in
applying global optimization methodologies and thus preventing their
use also in hybrid modalities.

Therefore this paper is aimed at describing and assessing the
planar extension of the CPM (in the following PCPM) according
to the following outline. The mathematical formulation is presented
in Section 2 pointing out the main differences compared to the linear
array case. Section 3 is devoted to the numerical assessment. Both
a consistency check, carried out through an asymptotic study, and a
comparative analysis (unfortunately, just only a test case is available
in the recent literature) are considered. Finally, some comments are
drawn in the concluding section (Section 4).
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2. MATHEMATICAL FORMULATION

Let us consider a planar array lying on the xy-plane whose array factor
is given by

AF (θ, φ) =
R∑

r=−R

S(r)∑
s=−S(r)

ξrse
j(kxxr+kyys), r, s �= 0 (1)

where xr =
[
r − sgn(r)

2

]
×dx and ys =

[
s− sgn(s)

2

]
×dy, dx and dy being

the inter-element distance along the x and y direction, respectively.
Moreover, kx = 2π

λ sin θ cosφ and ky = 2π
λ sin θ sinφ. Concerning

independently optimum sum and difference patterns, they are
generated by using three independent feeding networks and setting the
excitation vector ξ = {ξrs; r = ±1, . . . ,±R; s = ±1, . . . ,±S(r)} to
ζ =

{
ζrs = ζ(−r)s = ζr(−s) = ζ(−r)(−s); r = 1, . . . , R; s = 1, . . . , S(r)}

and to ς� =
{
ς�rs = ς�(−r)s = −ς�r(−s) = −ς�(−r)(−s); r = 1, . . . , R;

s = 1, . . . , S(r)}, � = E, H, respectively. Otherwise, when sub-
arraying strategies are considered [10], the sum beam is generated in
an optimal fashion by fixing ξ = ζ, while the compromise �-modes are
obtained through a grouping operation described by the aggregation
vectors c�

c� =
{
c�rs; r = 1, . . . , R; s = 1, . . . , S(r)

}
(2)

where c�rs ∈ [1, Q] is the sub-array index of the element located at the
r-th row and s-th column within the array architecture. Accordingly,
the compromise difference excitations are given by

γ� =
{
γ�rs = ζrsO

(
c�rs, q

)
g�q ;

r = 1, . . . , R; s = 1, . . . , S(r); q = 1, . . . , Q} (3)

where g�q is the gain coefficient of the q-th sub-array and O(c�rs, q) = 1
if c�rs = q and O(c�rs, q) = 0, otherwise. Summarizing, the problem of
defining the best compromise between sum and difference patterns is
recast as the definition of the configuration c�opt and the corresponding
set of weights g�

opt
so that γ�

opt
is close as much as possible to ς�.

Towards this end, the CPM is applied. Similarly to the linear
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array case, the following cost function is defined

Ψ
(
c�

)
=

Q∑
q=1

R∑
r=1

S(r)∑
s=1

ζ2
rs

∣∣∣[α�
rs − wrsq

(
c�

)]∣∣∣2
N

(4)

where N is the number of elements lying on the aperture [i.e., N =∑R
r=1 S(r)]. Moreover, α�

rs = ς�rs
ζrs

and w�
rsq = wrsq

(
c�

)
is given by

w�
rsq =

R∑
r=1

S(r)∑
s=1

ζ2
rsO

(
c�rs, q

)
α�
rs

R∑
r=1

S(r)∑
s=1

ζ2
rsO

(
c�rs, q

) ,

r = 1, . . . , R; s = 1, . . . , S(r); q = 1, . . . , Q.

(5)

As regards to the sub-array weights, they are computed once the
aggregation vector c� has been identified by simply using the following
relationship

g�q = O
(
c�rs, q

)
w�
rsq r = 1, . . . , R; s = 1, . . . , S(r); q = 1, . . . , Q. (6)

In order to determine the unknown clustering that minimizes (4),
the indication given in [16] has been exploited. More in detail, it
has been proved that a contiguous partition† of the array elements is
the optimal compromise solution. Accordingly, the set of contiguous
partitions (i.e., the set of admissible solutions) is defined by iteratively
partitioning in Q sub-sets the list V = {vn; n = 1, . . . , N} (n being the
list index) of the array elements ordered according to the corresponding
α�
rs values such that vn ≤ vn+1 (n = 1, . . . , N − 1), v1 = minrs{α�

rs},
vN = maxrs{α�

rs}.
Although the dimension of the PCPM solution space, 
PCPM ,

is significantly reduced compared to that of full global optimizers[
D(PCPM) =

(
N − 1
Q− 1

)
vs. D(GA) = Q

(
QN−1 + 1

) ]
or hybrid

global-local optimization techniques [D(Hybrid) = QN ], non-negligible
† A grouping of array elements is a contiguous partition if the generic (r2, s2)-th array
element belongs to the q-th sub-array only when two elements, namely the (r1, s1)-
th element and the (r3, s3)-th one, belong to the same sub-array and the condition

α�
r1s1 < α

�
r2s2 < α

�
r3s3 holds true.
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computational problems still remain since the large amount of
computational resources needed to sample 
PCPM especially when
N enlarges as it happens in realistic planar architecture. Therefore,
it is mandatory to devise an effective sampling procedure able to
guarantee a good trade-off between computational costs and optimality
of the synthesized compromise solution. Towards this end, the set
of admissible solutions has been coded into a Direct Acyclic Graph
(DAG). The DAG is composed by Q rows and N columns. The q-
th row is related to the q-th sub-array (q = 1, . . . , Q), whereas the
n-th column (n = 1, . . . , N) maps the vn-th element of the ordered
list V . An admissible compromise solution is coded into a path,
denoted by ψ, in the DAG. Each path ψ is described by a set of
N vertexes, {tn; n = 1, . . . , N} and through N − 1 relations/links
{en; n = 1, . . . , N − 1} among the vertexes belonging to the path.
With reference to Fig. 1, each vertex tn is indicated by a circle and
each link en with an arrow from a vertex tn to another one tn+1 on the
same row (i.e., arg (tn) = arg (tn+1) = rn, being rn the row of the n-th
vertex, rn ∈ [1, Q]) or down to an adjacent row (i.e., arg (tn) = rn and
arg (tn+1) = rn + 1). In order to identify the optimal compromise (or,
in an equivalent fashion, the optimal path ψopt in the DAG), let us
reformulate the concept of “border elements” of the linear case to the
planar representation in terms of DAG. Moreover, let us consider that
analogously to the linear case, only the “border elements” of ψ (i.e.,
those vertexes tn, n = 2, . . . , N − 1 having at most one of the adjacent

Figure 1. DAG representation.
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vertexes, tn−1 or tn+1, that belongs to a different row of the DAG) are
candidate to change their sub-array membership without generating
non-admissible aggregations. Accordingly, in order to determine
the optimal sub-array configuration c�opt that minimizes Ψ

(
c�

)
(4),

a sequence of trial paths ψ(k) = {(t(k)n , e
(k)
m ); n = 1, . . . , N ; m =

1, . . . , N −1} (k being the iteration/trial index) is generated. Starting
from an initial path ψ(k) (k = 0) defined by setting arg(t(0)1 ) = 1
and arg(t(0)N ) = Q and randomly choosing the other vertexes such as
arg(t(0)

n−1) ≤ arg(t(0)n ) ≤ arg(t(0)n+1), the path ψ(k) is iteratively updated
(ψ(k) ← ψ(k+1), c�(k) ← c�(k+1)) just modifying the memberships of
the border elements of the DAG. More in detail, the “border” vertexes
are updated as follows

arg
(
t(k+1)
n

)
=

{
r
(k)
n + 1 if r

(k)
n−1 = r

(k)
n

r
(k)
n − 1 if r

(k)
n+1 = r

(k)
n

, (7)

while the links e
(k)
n−1 � link [arg(t(k)n−1), arg(t(k)n )] and e

(k)
n �

link [arg(t(k)n ), arg(t(k)n+1)] connected to the “border” vertex t
(k)
n are

modified through the relationships

e
(k+1)
n−1 =




link
[
r
(k)
n , r

(k)
n + 1

]
if r

(k)
n−1 = r

(k)
n

link
[
r
(k)
n − 1, r(k)n − 1

]
if r

(k)
n+1 = r

(k)
n

(8)

and

e(k+1)
n =



link

[
r
(k)
n + 1, r(k)n + 1

]
if r

(k)
n−1 = r

(k)
n

link
[
r
(k)
n − 1, r(k)n

]
if r

(k)
n+1 = r

(k)
n

. (9)

The iterative process stops when a maximum number of iterations
Kmax (k > Kmax) or the following stationary condition holds true:∣∣∣∣∣KwΨ(k−1) −

Kw∑
h=1

Ψ(h)

∣∣∣∣∣
Ψ(k)

≤ η (10)

where Ψ(k) = Ψ
(
c�(k)

)
, Kw and η being a fixed number of

iterations and a fixed numerical threshold, respectively. At the end
of the iterative sampling of the DAG, path ψopt is found and the
corresponding aggregation vector, c�opt, is assumed as the optimal
compromise solution.
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3. NUMERICAL RESULTS

This section is aimed at assessing the effectiveness of the PCPM
through a set of representative results from several numerical
simulations. The remaining of this section is organized as follows.
Firstly, some experiments are presented in Section 3.1 to analyze the
behavior of the proposed approach in matching a reference pattern for
different numbers of sub-arrays. Successively, a comparative study
is carried out (Section 3.2) by considering the available test case
concerned with planar geometries and previously faced in [11].

3.1. Pattern Matching

In the first test case, the planar array consists of Ntot = 4×N = 316
equally-spaced (dx = dy = λ

2 ) elements arranged on a circular aperture
r = 5λ in radius. Because of the circular symmetry, the synthesis
procedure is only concerned with N = 79 elements. Moreover,
the sum pattern excitations ζ have been fixed to those of a Taylor
pattern [7] with SLL = −35 dB and n = 6. On the other hand,
the optimal difference H-mode excitations ςH have been chosen to
afford a Bayliss pattern [8] with SLL = −40 dB and n = 5. The
corresponding three-dimensional (3D) representations of the relative
power distributions are reported in Fig. 2 where u = sin θ cosφ and
v = sin θ sinφ [17], being θ ∈ [0, 90◦] and φ ∈ [0, 360◦], respectively. As

(b)(a)

Figure 2. Pattern Matching (N = 316, d = λ
2 , r = 5λ). Relative

power distribution of the reference (a) Taylor sum pattern (SLL =
−35 dB, n = 6) [7] and of the (b) H-mode Bayliss difference pattern
(SLL = −40 dB, n = 5) [8], respectively.
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regards to the compromise synthesis, the optimization has been limited
to the difference H-mode by exploiting the following relationship
γE =

{
γErs = −γHrs; r = 1, . . . , R; s = 1, . . . , S(r)

}
that holds for the

E-mode excitations due to the symmetry properties.
In the first experiment, the number of sub-arrays has been varied

from Q = 3 up to Q = 10. Fig. 3 shows the 3D representations of the
synthesized H-mode patterns. As it can be observed, the shapes of
both the main lobes and the sidelobes of the compromise distributions
get closer to the reference one [Fig. 2(b)] when the ratio N

Q reduces.
In order to better show such a trend and to efficiently represent the
behavior of the side-lobes, let us analyze the sidelobe ratio (SLR)

(a) (b)

(c) (d)

Figure 3. Pattern Matching (N = 316, d = λ
2 , r = 5λ). Relative

power distribution of the synthesized H-mode difference pattern when
(a) Q = 3, (b) Q = 4, (c) Q = 6, and (d) Q = 10.
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defined as

SLR(φ) =
SLL(φ)

maxθ [AF (θ, φ)]
, 0 ≤ θ < π

2
(11)

where AF (θ, φ) indicates the array factor. By following the same
guidelines in [11], the SLR has been controlled in the range φ ∈ [0◦, 80◦]
since the H-mode pattern vanishes at φ = 90◦. As expected, the
behavior of the SLR approximates that of the reference pattern when
Q increases (Fig. 4). Such an indication is quantitatively confirmed by
the statistics of the SLR values given in Table 1 as well as, pictorially,
by the plots in Fig. 5 where the pattern values along the φ = 0◦ cut
are shown.
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Figure 4. Pattern Matching (N = 316, d = λ
2 , r = 5λ). Plots of the

SLR values of the Bayliss pattern (SLL = −40 dB, n = 5) [8] and
of the compromise H-mode difference patterns when Q = 3, 4, 6, 10
(φ ∈ [−80◦, 80◦]).

3.2. Comparative Assessment

To the best of the authors’ knowledge, the topic of planar sub-arraying
has been recently addressed only by Ares et al. in [11]. More in detail,
a Simulated Annealing (SA) procedure has been used to determine the
sub-array weights for a pre-fixed sub-array configuration by minimizing
a suitable cost function aimed at penalizing the distance of the SLL
of the compromise pattern from a prescribed value.

For comparison purposes, let us consider the same array geometry
of [11]. More in detail, the elements are placed on a 20 × 20 regular
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Figure 5. Pattern Matching (N = 316, d = λ
2 , r = 5λ). Azimuthal

(φ = 0◦) plots of the relative power of the Bayliss pattern (SLL =
−40 dB, n = 5) [8] and of the compromise H-mode patterns when
Q = 3, 4, 6, 10.

Table 1. Pattern Matching (N = 316, d = λ
2 , r = 5λ). Statistics of

the SLR values in Fig. 3.

[dB] min{SLR} max{SLR} av{SLR} var{SLR}
Reference [8] −40.44 −27.29 −36.68 6.05

Q = 3 −33.82 −16.48 −26.74 14.26
Q = 4 −37.32 −15.68 −31.56 15.11
Q = 6 −36.67 −17.47 −31.25 26.30
Q = 10 −38.72 −23.75 −34.77 11.46

grid (dx = dy = λ
2 ) lying on the xy-plane. The radius of the circular

aperture of the antenna is equal to r = 4.85λ. The sum excitations
have been fixed to those values affording a circular Taylor pattern [7]
with SLL = −35 dB and n = 6. Concerning the compromise solution,
Q = 3 sub-arrays have been considered.

As far as the comparative study is concerned, the final solution of
the CPM -based algorithm (i.e., definition of cHopt and gH

opt
) has been

required to present SLR values lower than those from the SA approach
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[11]. Since the PCPM is an excitation matching method, it has been
iteratively applied by updating the reference difference pattern until
the constraints on the compromise solution were satisfied. Accordingly,
a succession of reference excitations ςH(k), k = 1, . . . ,K have been
selected. In particular, they have been fixed to those of a Bayliss

Table 2. Comparative Assessment (N = 300, d = λ
2 , r = 4.85λ,

Q = 3). Statistics of the SLR values of the H-mode difference
pattern synthesized with the SA approach [11] and with the iterative
PCPM (Reference Bayliss pattern n = 6 [8]: SLL

H(1)
ref = −25 dB,

SLL
H(2)
ref = −30 dB, and SLLH(3)

ref = −35 dB).

[dB] min{SLR} max{SLR} av{SLR} var{SLR}
SA [11] −27.70 −18.93 −22.52 6.41

CPM :SLL
H(1)
ref =−25 dB −23.30 −14.58 −21.48 3.93

CPM :SLL
H(2)
ref =−30 dB −28.78 −16.95 −24.08 14.15

CPM :SLL
H(3)
ref =−35 dB −29.43 −18.94 −25.87 5.74

Table 3. Comparative Assessment (N = 300, d = λ
2 , r = 4.85λ,

Q = 3). Sub-array configurations and weights obtained with the
PCPM (Reference Bayliss pattern n = 6 [8]: SLL

H(1)
ref = −25 dB,

SLL
H(2)
ref = −30 dB, and SLLH(3)

ref = −35 dB).

SLL
H(1)
ref = −25 dB SLL

H(2)
ref = −30 dB SLL

H(kopt)

ref = −35 dB

c

1 1

1 1 1 2 2

1 1 1 2 2 2

1 1 1 2 2 2 3

1 1 1 2 2 2 3 3

1 1 1 2 2 2 3 3 3

1 1 1 2 2 2 3 3 3

1 1 1 2 2 2 3 3 3

1 1 1 2 2 3 3 3 3 3

1 1 1 2 2 3 3 3 3 3

1 1

1 1 1 1 2

1 1 1 2 2 2

1 1 2 2 2 2 2

1 1 2 2 2 3 3 3

1 1 2 2 3 3 3 3 3

1 1 2 2 3 3 3 3 3

1 1 2 2 3 3 3 3 3

1 1 2 2 3 3 3 3 3 3

1 1 2 2 3 3 3 3 3 3

1 1

1 1 1 1 1

1 1 1 1 1 2

1 1 1 2 2 2 2

1 1 2 2 2 2 2 2

1 1 2 2 3 3 3 2 2

1 1 2 2 3 3 3 3 2

1 1 2 2 3 3 3 3 3

1 1 2 3 3 3 3 3 3 2

1 1 2 3 3 3 3 3 3 2

g1 0.4668 0.3337 0.3355

g2 1.3435 0.9763 0.9381

g3 2.1736 1.6091 1.4469
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difference pattern [8] with n = 6 and SLL
H(k)
ref = −25 dB (k = 1),

SLL
H(k)
ref = −30 dB (k = 2), and SLLH(k)

ref = −35 dB (k = 3). The
aggregations obtained at the end of each k-th iteration by the PCPM
have cost function values equal to Ψ(cH(1)

opt ) = 0.65× 10−1, Ψ(cH(2)
opt ) =

0.31 × 10−1, and Ψ(cH(3)
opt ) = 0.27 × 10−1, respectively. Although the

application of the PCPM could be further iterated by defining others
reference targets, the process has been stopped at k = kopt = 3 since
the requirement [SLRPCPM (φ) < SLRSA(φ), 0◦ ≤ φ ≤ 80◦] has been

(a) (b)

(c) (d)

Figure 6. Comparative Assessment (N = 300, d = λ
2 , r = 4.85λ, Q =

3). Relative power distribution of the H-mode compromise pattern
synthesized with (a) the SA approach [11] and the PCPM when
the Reference Bayliss pattern n = 6 [8] presents a sidelobe level
equal to (b) SLLH(1)

ref = −25 dB, (c) SLLH(2)
ref = −30 dB, and(d)

SLL
H(3)
ref = −35 dB.
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fulfilled by the compromise solution (cHopt = c
H(3)
opt , gH

opt
= gH(3)

opt
). The

corresponding relative power distributions are shown in Fig. 6 where
the solution obtained by Ares et al. [11] is reported [Fig. 6(a)], as
well. To better point out the capabilities of the iterative PCPM , also
the plots of the SRL values (Fig. 7) and the corresponding statistics
(Table 2) are given. Moreover, in order to make the PCPM results
reproducible, the sub-array configurations and weights are given in
Table 3. The lists of digits of Table 3 (second row) indicate the
sub-array memberships of the N = 75 array elements belonging to
a quadrant of the antenna aperture.
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V

Figure 7. Comparative Assessment (N = 300, d = λ
2 , r = 4.85λ, Q =

3). Plots of the SLR values of the compromise H-mode difference
patterns synthesized by the SA approach [11] and the PCPM when
the Reference Bayliss pattern n = 6 [8] presents a sidelobe level equal
to SLLH(1)

ref = −25 dB, SLLH(2)
ref = −30 dB, and SLLH(3)

ref = −35 dB
(φ ∈ [−80◦, 80◦]).

Finally, let us analyze the computational issues. The total amount
of CPU -time to get the final solution was Ttot = 2.6361 [sec] (i.e.,
T (1) = 0.8148 [sec], T (2) = 0.8302 [sec], and T (3) = 0.9911 [sec]).
Moreover, the number of iterations required at each step to synthesize
an intermediate compromise solution is equal to K(1)

opt = 14, K(2)
opt = 14,

and K(3)
opt = 17, respectively.
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4. CONCLUSIONS

In this paper, a combinatorial approach for the synthesis of sub-arrayed
monopulse planar antennas has been presented. Starting from a simple
and compact representation of the space of admissible solutions, the
synthesis of compromise difference modes has been obtained through
a path searching procedure that allows a considerable reduction of the
problem complexity as well as a significant saving in terms of storage
resources and CPU -time. The proposed technique has been assessed
through some experiments concerned with high-dimension synthesis
problems. The obtained results clearly indicate that the proposed
scheme can be of interest when the number of degrees of freedom of
the synthesis at hand is very large and computationally unfeasible for
stochastic optimization procedures.
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