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Abstract—In this paper, two different neural models are proposed
for calculating the quasi-static parameters of multilayer cylindrical
coplanar waveguides and strip lines. These models were basically
developed by training the artificial neural networks with the numerical
results of quasi-static analysis. Neural models were trained with
four different learning algorithms to obtain better performance and
faster convergence with simpler structure. When the performances of
neural models are compared with each other, the best test results are
obtained from the multilayered perceptrons trained by the Levenberg-
Marquardt algorithm. The results obtained from the neural models
are in very good agreements with the theoretical results available in
the literature.

1. INTRODUCTION

Various coplanar waveguides (CPWs) and coplanar strip lines (CPSs)
on planar substrates are widely used in microwave and millimeter
wave integrated circuits due to their flexibility in the design of
complex microwave circuitry requiring series and shunt connections.
Recently, cylindrical CPW (CCPW) and cylindrical CPS (CCPS) with
a single dielectric substrate or multilayer dielectric substrates have
been proposed, which have the potential to be used in applications such
as antennas, sensors, wireless communications, transition adapters,
and baluns.
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So far, the various CCPWs and CCPSs have been analyzed
by many researchers. CCPW with a single dielectric substrate has
been analyzed with the use of full-wave [1, 2] and quasi-static [3–5]
methods. Multilayer CCPW has been analyzed by Alkan et al. [6]
with the use of conformal mapping technique (CMT) which is the
most often used quasi-static method. The quasi-static parameters of
CCPS having a single dielectric substrate [7, 8] and multilayer dielectric
substrates [9, 10] have been determined with the use of CMT.

As mentioned above, CCPW and CCPS with a single dielectric
substrate or multilayer dielectric substrates have been analyzed with
the use of quasi-static or full-wave methods. While full-wave methods
are the most accurate tools for obtaining the characteristic parameters
of transmission lines and analytically extensive, quasi-static methods
are quite simple but do not threaten the dispersive nature of generic
transmission lines. Consequently, the approximation of the quasi-static
methods becomes worse as the transmission line becomes dispersive.

The aim of this paper is to present a new approximation based
on artificial neural networks (ANNs) to determine the quasi-static
parameters of multilayer CCPW and CCPS as an alternative method.
As is well known, the quasi-static approximation is valid only at low
frequencies. However, Bedair and Wolff [11] have shown that quasi-
static approximation can be used in the design of coplanar monolithic
microwave integrated circuits up to 40 GHz because of their very low
dispersion. For this reason the neural models to be proposed in this
work can also be used to discuss the propagation characteristics of
multilayer CCPW and CCPS, at least up to millimeter-wave frequency
range.

Learning and generalization ability, fast real-time operation and
ease of implementation features have made ANNs popular in the last
decade [12–14]. ANNs have been applied in many areas because of
these features. Accurate and efficient microwave components, filters
and microstrip antennas have been analyzed and designed with the
use of ANNs [15–25]. In these applications, ANNs have more general
functional forms and are usually better than the classical techniques,
and provide simplicity in real-time operation.

In this work, two different neural models are proposed for
calculating quasi-static parameters, the effective permittivity and
characteristic impedance, of multilayer CCPW and CCPS. It should
also be emphasized that the presented neural models are not only
valid for multilayer CCPW and CCPS but also valid for CCPW and
CCPS with a single dielectric layer. These neural models were trained
with quasi-Newton (QN), Conjugate gradient with Flecther (CGF),
Levenberg-Marquardt (LM) and Bayesian regulation (BR) learning
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algorithms to obtain better performance and faster convergence with
simpler structure.

The performances of the neural models trained with different
learning algorithms have been compared to each other. The inputs
to the neural models are the three relative permittivities of the
substrate materials and the three geometrical dimensions of multilayer
CCPW and CCPS. The outputs of the neural models are the effective
permittivity and characteristic impedance.

2. DETERMINATION OF THE QUASI-STATIC
PARAMETERS OF MULTILAYER CCPW AND CCPS

The cross-sections of multilayer CCPW and CCPS to be considered in
this work are depicted in Figs. 1(a) and 1(b), respectively. In these
figures, S and w represent central strip and slot width for multilayer
CCPW and represent slot width and strip width for multilayer CCPS.
On the other hand, h1, h2 and h3 indicate the thickness of the dielectric
materials with the relative permittivities εr1, εr2 and εr3 respectively.

In quasi-static analysis, all conductor materials are assumed to be
perfectly conducting and the thickness of the conductor t is ignored.
Using the quasi-static approximations, the effective permittivity εeff

and the characteristic impedance Z0 of the transmission lines are given
as;

εeff =
C

C0
(1)

Z0 =
√

εeff

C · v0
(2)

where v0 is the speed of light in free space, C is the total capacitance of
the transmission line, C0 is the air capacitance of the line corresponding
with all dielectrics replaced by air. Therefore, one only has to find the
air and total capacitances to obtain the quasi-static parameters of the
transmission lines.

The total capacitance of multilayer CCPW and CCPS can be
expressed as the sum of the air and partial capacitances as follow;

C = C0 + C1 + C2 + C3 (3)

Here C1, C2, and C3 are the partial capacitances of dielectric layer
with thickness h1 with relative permittivity εr1, the capacitance of
dielectric layer with thickness h2 with relative permittivity εr2, and
the capacitance of dielectric layer with thickness h3 with relative
permittivity εr3, respectively.
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(a)

(b)

Figure 1. Cross sections of multilayer CCPW and CCPS: (a)
multilayer CCPW; (b) multilayer CCPS.
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After a sequence of conformal mapping transformations, the air
and partial capacitances for multilayer CCPW can be determined as
described in [6]. Than the effective permittivity and characteristic
impedance of multilayer CCPW can be obtained by using the air and
total capacitances in Eqs. (1) and (2), respectively as;

εeff = 1 + q1 ·
εr1 − εr2

2
+ q2 ·

εr2 − 1
2

+ q3 ·
εr3 − 1

2
(4)

Z0 =
30 π
√

εeff
· K(k′

0)
K(k0)

(5)

where the terms q1, q2 and q3 are called the partial filling factors and
they are given as

qi =
K(ki)
K(k′

i)
· K(k′

0)
K(k0)

i = 1, 2, 3. (6)

where K(k) and K(k′) are the complete elliptic integrals of the first
kind with the modulus of k and complementary modulus k

′
. These

modules have been determined in terms of geometrical dimensions of
multilayer CCPW in [6] as;

k0 =
S

G

√√√√(2πb)2 − G2

(2πb)2 − S2
, k′

0 =
√

1 − k2
0 (7)

and

ki =
sinh

(
π · S

4 · b · Hi

)

sinh
[

π · G
4 · b · Hi

]
√√√√√√√√√

sinh2

(
π2

2Hi

)
− sinh2

(
Gπ

4bHİ

)

sinh2

(
π2

2Hi

)
− sinh2

(
Sπ

4bHİ

) ,

k′
i =

√
1 − k2

i , i = 1, 2, 3 (8)

with

H1 = ln(b/a) (9)
H2 = ln(b/c) (10)
H3 = ln(d/b) (11)

The air capacitance C0 and partial capacitances, C1, C2, and
C3 for multilayer CCPS can be determined with the use of CMT
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as described in [9], than the effective permittivity and characteristic
impedance of multilayer CCPS are obtained by using the air and total
capacitances in Eqs. (1) and (2), respectively as

εeff = 1 +
εr1 − εr2

2
· p1 +

εr2 − 1
2

· p2 +
εr3 − 1

2
· p3 (12)

Z0 =
120 π
√

εeff
· K(k′

0)
K(k0)

(13)

where the filling factors pi are given by

pi =
K(k′

i)
K(ki)

· K(k0)
K(k′

0)
i = 1, 2, 3 (14)

where K(k) and K(k′) are the complete elliptic integrals of the first
kind with the modulus of k and complementary modulus k′. These
modules have been determined in terms of geometrical dimensions of
multilayer CCPS in [9] as;

k0 =
S

S + 2w
k′

0 =
√

1 − k2
0 (15)

and

ki =
sinh

(
π · S

4 · b · Hi

)

sinh
[
π · (S + 2 · w)

4 · b · Hi

] , k′
i =

√
1 − k2

i , i = 1, 2, 3 (16)

where Hi (i = 1, 2, 3) were described in Eqs. (9)-(11).
Finally, the characteristic parameters of multilayer CCPW and

CCPS are achieved in terms of the closed form expressions. These
closed-form expressions obtained by CMT consist of complete elliptic
integrals, which are difficult to calculate even by computers. For
this reason, the approximate formulas were proposed for calculation
of elliptic integrals [26].

The effective permittivities and characteristic impedances of
multilayer CCPW and CCPS are easily and simply determined by
using the presented neural models. The inputs to ANN models
are the relative permittivities of three dielectric materials, and three
geometrical dimensions of multilayer CCPW and CCPS. The outputs
are the effective permittivity and characteristic impedance.
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3. ARTIFICIAL NEURAL NETWORKS (ANNS)

ANN learns relationships among sets of input-output data which are
characteristic of the device under consideration. It is a very powerful
approach for building complex and nonlinear relationship between a set
of input and output data. ANNs are developed from neurophysiology
by morphologically and computationally mimicking human brains [12–
14]. Although the precise operation details of ANNs are quite different
from those of human brains, they are similar in three aspects: they
consist of a very large number of processing elements (the neurons),
each neuron connects to a large number of other neurons, and the
functionality of networks is determined by modifying the strengths of
connections during a learning phase.

The power of neural computations comes from weight connection
in a network. Each neuron has weighted inputs, summation function,
transfer function, and output. The behavior of a neural network is
determined by the transfer functions of its neurons, by the learning
rule, and model architecture. The weights are adjustable parameters
and, in that sense, a neural network is a parameterized system. The
weighted sum of the inputs constitutes the activation of the neurons.
The activation signal is passed through a transfer function to produce
the output of a neuron. Transfer function introduces non-linearity to
the network. During training process, the inter-unit connections are
optimized until the error in predictions is minimized and the network
reaches the specified level of accuracy. Once the network is trained,
new unseen input information is entered to the network to calculate
the output for test.

In the course of developing an ANN model, the architecture
of the neural network and the learning algorithm are the most
important factors. ANNs have many structures and architectures [12–
14]. The class of ANN and/or architecture selected for a particular
model implementation depends on the problem to be solved.
After several experiments using different architectures coupled with
different training algorithms, in this paper, the MLP neural network
architecture [12] was used to compute the quasi-TEM parameters of
multilayer CCPW and CCPS.

3.1. Multilayered Perceptrons (MLPs)

The MLP is one of the most extensively used ANN architecture, due
to well-known general approximation capabilities, despite its limited
complexity. The MLP comprises an input layer, an output layer, and
a number of hidden layers. Neurons in the input layer only act as
buffers for distributing the input signals xi to neurons in the hidden
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layer. Each neuron j in the hidden layer sums up its input signals xi

after weighting them with the strengths of the respective connections
wji from the input layer and computes its output yj as a function f of
the sum, namely;

yj = f
(∑

wjixi

)
(17)

f can be a simple threshold function, a sigmoidal or hyperbolic tangent
function. The output of neurons in the output layer is computed
similarly.

Training a network consists of adjusting weights of the network by
a learning algorithm. The learning algorithm gives the change ∆wji(k)
in the weight of a connection between neurons i and j at time k. The
weights are then updated according to the following formula;

wji(k + 1) = wji(k) + ∆wji(k + 1) (18)

MLPs can be trained using many different learning algorithms [12]. In
this article, the following four learning algorithms used to train the
MLPs were described briefly.

Levenberg-Marquardt (LM): This is a least-squares estima-
tion method based on the maximum neighborhood idea [27, 28]. It
combines the best features of the Gauss-Newton technique and the
steepest-descent method, but avoids many of their limitations. In par-
ticular, it generally does not suffer from the problem of slow conver-
gence.

Bayesian Regulation (BR): The BR algorithm updates the
weight and bias values according to the LM optimization and
minimizes a linear combination of squared errors and weights, and then
determines the correct combination so as to produce a well generalized
network [29]. It takes place within the LM and requires more training
and memory than the LM.

Conjugate Gradient of Fletcher-Powell (CGF): This
method updates weights and bias values according to the conjugate
gradient with Fletcher-Reeves [30, 31]. Each variable is adjusted to
minimize the performance along the search direction. The line search
is used to locate the minimum point. The first search direction is the
negative of the gradient. In succeeding iterations the search direction
is computed from the new gradient and the previous search direction.
Fletcher-Reeves version of conjugate gradient uses the norm square
of previous gradient and the norm square of the current gradient to
calculate the weights and biases.

Quasi-Newton (QN): This is based on Newton’s method but
don’t require the calculation of second derivatives [32]. They update
an approximate Hessian matrix at an each iteration of the algorithm.
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The update is computed as a function of the gradient. The line search
function is used to locate the minimum. The first search direction is the
negative of the gradient. In succeeding iterations the search direction
is computed according to the gradient.

4. NEURAL MODELS FOR MULTILAYER CCPW AND
CCPS

In this paper, two neural models are proposed for calculating the
quasi-static parameters of multilayer CCPW and CCPS. For the neural
models, the inputs are the relative permittivities of substrate materials
εr1, εr2, εr3 and three geometrical dimensions h2/h3, G/h1, S/G,
and the outputs are the effective permittivity (εeff ) and characteristic
impedance (Z0). Neural models used in calculating the effective
permittivities and characteristic impedances of multilayer CCPW and
CCPS are shown in Figs. 2(a) and 2(b), respectively.

ANN models are a kind of black box models, whose accuracy
depends on the data presented to it during training process. A good
collection of the training data, i.e., data which is well-distributed,
sufficient, and accurately simulated, is the basic requirement to obtain
an accurate model. For microwave applications, there are two types of
data generators, namely measurement and simulation. The selection
of a data generator depends on the application and the availability of
the data generator.

The training data sets were obtained from CMT introduced by
Alkan et al. [6], and 1296 data sets were used to train the neural
model for multilayer CCPW. 576 data sets obtained from [3, 4, 6] were
used to test the neural model for multilayer CCPW. The training and
test data sets were obtained from CMT proposed by Gorur et al. [9]
and 1008 data sets were used to train the neural model for multilayer
CCPS. 448 data sets, which are completely different from training data
sets, were used to test the neural model for multilayer CCPS. The
ranges of the training data sets for both multilayer CCPW and CCPS
are among 2 ≤ εr1 ≤ 14, 1 ≤ εr2 = εr3 ≤ 10, 0.1 ≤ S/G ≤ 0.9,
1 ≤ G/h1 ≤ 4, 100 µm ≤ h1 ≤ 1500 µm, 200 µm ≤ h2 ≤ 1400 µm,
100 µm ≤ h3 ≤ 1400 µm. The curvature ratio R = b/a was chosen for
all structures as 0.8.

The aim of the training process is to minimize the training
error between the target outputs and the actual outputs of the
ANNs. Training the ANNs with the use of a learning algorithm to
calculate the effective permittivities and characteristic impedances of
multilayer CCPW and CCPS involves presenting them sequentially
and/or randomly with different sets (εr1, εr2, εr3, h2/h3, G/h1, S/G)
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(a)

(b)

Figure 2. Neural network architectures for multilayer CCPW and
CCPS: (a) neural model for multilayer CCPW; (b) neural model for
multilayer CCPS.

and corresponding effective permittivities (εeff ) and characteristic
impedances (Z0). First, the input vectors (εr1, εr2, εr3, h2/h3,
G/h1, S/G) are presented to the input neurons and output vectors
εeff and Z0 are computed. ANN outputs are then compared to the
known outputs of the training data sets and errors are computed. Error
derivatives are then calculated and summed up for each weight until
all the training examples have been presented to the network. These
error derivatives are then used to update the weights of neurons in
the models. Training proceeds until errors are lower than prescribed
values.
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Currently, there is no deterministic approach that can optimally
determine the number of hidden layers and the number of neurons.
A common practice is to take a trial and error approach which
adjusts the hidden layers to strike a balance between memorization and
generalization. After several trials, it was found in this paper that three
hidden layered and two hidden layered networks were achieved the task
in high accuracy for multilayer CCPW and CCPS, respectively.

The structures of the presented neural models in this work are
given in Figs. 2(a) and 2(b). The most suitable network configuration
found was 6 × 6 × 10 × 6 × 2 for multilayer CCPW. It means that
the number of neurons were 6 for the input layer, 6, 10 and 6 for
the first, the second and third hidden layers and 2 for the output
layer. The tangent sigmoid activation functions were used in the first
hidden layer, the sigmoid activation functions were used in the other
two hidden layers. The network configuration found was 6× 6× 18× 2
for multilayer CCPS, and the tangent sigmoid and logarithmic sigmoid
activation functions were used in the first and second hidden layers,
respectively. The linear activation function was used in the input and
output layers in the neural models for both multilayer CCPW and
CCPS.

5. RESULTS AND CONCLUSIONS

ANNs have been successfully introduced to calculate the quasi-static
parameters of multilayer CCPW and CCPS. ANNs were trained with
four different — the LM, the BR, the CGF and the QN — learning
algorithms to obtain better performances and faster convergence
with simpler structure. The performances of learning algorithms
are compared with each other and obtained training and test RMS
errors are given in Table 1 and Table 2 for both the effective
permittivities and characteristic impedances of multilayer CCPW and
CCPS, respectively. As it can be seen from these tables the best ANN
results were achieved from the models trained with the LM learning
algorithms for both multilayer CCPW and CCPS.

In order to show the validation of the presented neural models
trained with the LM learning algorithm for the determination
of the quasi-static parameters of multilayer CCPW and CCPS,
comprehensive comparisons have been made and obtained results are
explained briefly in the following paragraphs.

Three comparisons have been made for the determination of the
quasi-static parameters of CCPWs having different electrical properties
and geometrical dimensions. In the first comparison, the results for the
effective permittivity and characteristic impedance of CCPW having a
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Table 1. Training and test RMS errors of the neural models for
multilayer CCPW.

Learning Algorithms RMS Errors for training RMS Errors for test

εeff Z0 (Ω) εeff Z0 (Ω)

LM 0.1409 0.6283 0.0512 0.1103

BR 2.5326 0.5983 0.5763 0.2428

CGF 14.4429 4.2829 1.1506 7.5709

QN 20.2353 117.4026 1.1086 8.1041

Table 2. Training and test RMS errors of the neural models for
multilayer CCPS.

Learning Algorithms RMS Errors for training RMS Errors for test

εeff Z0 (Ω) εeff Z0 (Ω)

LM 0.5414 0.4176 0.9829 0.2044

BR 1.9970 0.8685 3.8211 0.1822

CGF 1.6806 2.2890 18.4865 25.9225

QN 1.1837 1.5074 64.9284 78.2641

single dielectric layer are given in Figs. 3(a) and 3(b) for four different
G/h1 values with respect to the shape ratio S/G, respectively. There
is a perfectly good agreement between the results of the CMT [3, 4]
and the presented neural model. In order to show the validation of our
neural model for multilayer CCPWs having two and three dielectric
layers, the obtained ANN results are compared with the quasi-static
analysis results [6] for the effective permittivity and characteristic
impedance in second and third comparisons. The comparison results
for the quasi-static parameters of multilayer CCPW are given in Figs. 4
and 5 for four different G/h1 values with respect to the shape ratio
S/G, respectively. These comparison results show that there are very
good agreements among the results of the model trained by the LM
learning algorithm and the quasi-static analysis [6].

Three comparisons have also been made for the validation of
the neural model for CCPSs having different electrical properties and
geometrical dimensions. The first comparison is made for the effective
permittivities and characteristic impedances of multilayer CCPS. The
obtained results for the characteristic parameters of multilayer CCPS
are shown graphically in Figs. 6(a) and 6(b), respectively. This
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Figure 3. The comparison of the quasi-static analysis results and
ANN results for CCPW with a single dielectric layer as a function of the
shape factor S/G and the ratio of G/h1 (εr1 = 12.9, εr2 = εr3 = 1 and
h1 = 762µm): (a) effective permittivity; (b) characteristic impedance.
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Figure 4. The comparison of the quasi-static analysis results and
ANN results for CCPW with two dielectric layers as a function of
the shape factor S/G and the ratio of G/h1 (εr1 = 12.9, εr2 = 1,
εr3 = 10, h1 = 762µm and h3 = 635µm): (a) effective permittivity;
(b) characteristic impedance.
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Figure 5. The comparison of the quasi-static analysis results and
ANN results for CCPW with three dielectric layers as a function of the
shape factor S/G and the ratio of G/h1 (εr1 = 12.9, εr2 = εr3 = 10,
h1 = 762µm, and h2 = h3 = 500µm): (a) effective permittivity; (b)
characteristic impedance.
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Figure 6. The comparison of the quasi-static analysis results and
ANN results for CCPS with three dielectric layers as a function of the
shape ratio S/G for different values of G/h1 (εr1 = 12.9, εr2 = εr3 = 10,
h1 = 762µm, and h2 = h3 = 500µm): (a) effective permittivity; (b)
characteristic impedance.



Progress In Electromagnetics Research B, Vol. 3, 2008 17

figure illustrates how the effective permittivity and characteristic
impedance of multilayer CCPS varies with the shape ratio S/G for
different values of G/h1. It is apparent from Fig. 6 that the results
of ANN are in very good agreement with the results of CMT [9]
for both effective permittivities and characteristic impedances. The
second comparison is made for the quasi-static parameters of CCPS
with two dielectric layers. The obtained results for the effective
permittivities and characteristic impedances of multilayer CCPS are
shown in Figs. 7(a) and 7(b), respectively. It can be seen from this
figure there is again very good agreement between neural model results
trained with LM and CMT [9] results for the quasi-static parameters of
CCPS with two dielectric layers. The last comparison is made for the
characteristic parameters of CCPS with a single dielectric substrate
(εr2 = εr3 = 1). The comparisons for the effective permittivity
and characteristic impedance of this structure are shown in Figs. 8(a)
and 8(b), respectively. This figure also show that there is very good
agreement between the neural results and CMT [7] results for both
effective permittivity and characteristic impedances.

All these comparison results obviously show that there are very
good agreements among the results of the neural models and the quasi-
static analysis available in the literature for multilayer CCPW and
CCPS. So the neural models presented in this work are very successful
for the determination of the quasi-static parameters of CCPWs and
CCPSs with a single dielectric and multilayer dielectrics. This very
good agreement also shows that neural models presented in this work
are not only valid for multilayer CCPW and CCPS but also a single
layered CCPW and CCPS. Moreover, it should be emphasized that
the proposed neural model is much simpler and more useful for the
designers than the other analyzing methods with a good accuracy.

Using the proposed neural model with a personal computer, one
can accurately calculate the characteristic parameters of multilayer
CCPW and CCPS without processing any background knowledge.
Even if training takes less than a few minutes, after training the
calculation time is less than a few microseconds in real-time calculation.
Thus, the neural models are very fast after training. Finally, the neural
models presented in this study, achieves the determination of the quasi-
static parameters of the multilayer cylindrical transmission lines with
simpler structure and high accuracy. It does not require complicated
mathematics and strong background knowledge so it can be very useful
for the development of fast computer-aided design algorithms which
are capable of accurately predicting the characteristic parameters of
multilayer CCPW and CCPS.
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Figure 7. The comparison of the quasi-static analysis results and
ANN results for CCPS with two dielectric layers as a function of the
shape ratio S/G for different values of G/h1 (εr1 = 12.9, εr2 = 1,
εr3 = 10, h1 = 762µm and h3 = 500µm): (a) effective permittivity;
(b) characteristic impedance.



Progress In Electromagnetics Research B, Vol. 3, 2008 19

6
6.5

7
7.5

8
8.5

9
9.5
10

0 0.2 0.4 0.6 0.8 1

S/G

E
ff

ec
tiv

e 
pe

rm
itt

iv
ity

  

 

40

60

80

100

120

140

160

180

0 0.2 0.4 0.6 0.8 1

S/G

C
ha

ra
ct

er
is

tic
 im

pe
da

nc
e 

   
 

 

(a) effε

(b) 

G/h1 = 1, CMT [7]                 ANN for G/h1 = 1, 
G/h1 = 2, CMT [7]                ANN for G/h1 = 2, 
G/h1 = 3, CMT [7]                ANN for G/h1 = 3, 
G/h1 = 4, CMT [7]             x    ANN for G/h1 = 4. 

Z0 ( ) Ω

<

<

D- - -     

_ _ _

_   _-

Figure 8. The comparison of the quasi-static analysis results and
ANN results for CCPS with a single dielectric layer as a function
of the shape ratio S/G for different values of G/h1 (εr1 = 12.9,
εr2 = εr3 = 1 and h1 = 762µm): (a) effective permittivity; (b)
characteristic impedance.
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