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Abstract—A hybrid technique based on Finite-difference frequency
domain and particle swarm optimization techniques is proposed to
reconstruct the breast cancer cell dimension and determines its
position. Finite-difference frequency domain is formulated to calculate
the scattered field after illuminating the breast by a microwave
transmitter. Two-dimensional and three-dimensional models for the
breast are used. The models include randomly distributed fatty breast
tissue, glandular tissue, 2-mm thick skin, as well as chest wall tissue.
The models are characterized by the dielectric properties of the normal
breast tissue and malignant tissue at 800 MHz. Computer simulations
have been performed by means of a numerical program; results show
the capabilities of the proposed approach.

1. INTRODUCTION

Breast cancer is the most frequently diagnosed cancer in women.
It is the second leading cause of cancer death in women after lung
cancer. Detection of early stage tumor reduces the breast cancer
mortality rate. Screening programs have been introduced across
Egypt to encourage women to have regular mammograms. X-ray
mammography is currently the most effective screening modality for
detecting clinically occult breast cancers. Mammography fulfills almost
all requirements to be an efficient imaging tool [1]. However, X-ray
mammography has the following shortcomings [2, 3]:

1. It has difficulties in detecting breast tumors at their earlier stages.
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2. It has decreased effectiveness in cases of women with dense breasts
and also in detecting tumors located near the chest wall or
underarm.

3. Using ionizing X-rays may destroy the tissue they penetrate.
4. The discomfort of the patients because of breast compression, and

the relatively expensive cost.
Complementary non-ionizing imaging methods exist today. The

most important ones are ultrasound and magnetic resonance imaging
(MRI) with contrast enhancement, but no one of these methods is
used in routine cancer screening. These methods cannot detect the
early signs of cancer, so they have importance in later diagnostics to
verify the malignity of the breast tissue [4–7].

Microwave imaging can be used effectively for the detection of
biological anomalies like tumor at an early curable stage. It can be
one of the needed imaging modalities in the future. This is because
microwave imagining has a strong potential to detect tumor due to the
high dielectric contrast between malignant and glandular breast tissues
in the microwave range [6]. Also, microwave imaging is a non-ionizing
method which probably will be rather inexpensive compared to MRI
and safer compared to X-ray. Versions of video pulse radars were first
introduced for medical applications as a means to detect malignancy in
internal biological tissues by Hagness et al. [8–10]. Fear et al. [11–13]
demonstrated the feasibility of detecting and localizing small tumors
in three dimensions.

The detection of the cancer and its position represents a complex
inverse scattering problem that needs to be solved iteratively. That
means the error between the measured data and the scattered fields
computed from the trial solution is minimized at the end of the
iteration, and the trial solution is then progressively adjusted towards
the size and the position of the cancer. It is well-known that
traditional deterministic techniques [15, 16] used for fast reconstruction
of microwave images suffer from a major drawback, where the final
image is highly dependent on the initial trial solution. In addition,
it is often difficult to decide the adequacy of the initial trial solution
for ensuring the correctness of the final solution. To overcome this
obstacle, population based stochastic methods such as the genetic
algorithm (GA) and particle swarm optimizer (PSO) have become
attractive alternatives to reconstruct microwave images [17–19]. These
techniques consider the imaging problem as a global optimization
problem by imparting each individual within the population with its
own fitness value as per the objective function defined for the problem,
and reconstruct the correct image by searching for the optimal solution
through the use of either rivalry or cooperation strategies in the
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problem space. In this paper, a hybrid solution based on the finite-
difference frequency-domain (FDFD) and the particle swarm optimizer
(PSO) techniques are used to detect and determine the position of the
cancer.

This paper is organized as follows. In Section 2, the methods
that are used in the simulation are shown, where the 2-D and the 3-D
breast modals simulated using (FDFD) to calculate the scattered field
and using (PSO) to reconstruct the cancer cell position. Section 3,
shows the models that are used for the breast and the tumor. In
Section 4, numerical results are shown to demonstrate the efficiency of
the technique. Conclusions are presented in Section 5.

2. PROBLEM FORMULATION

Recently, the finite-difference frequency-domain method has received
considerable interest as an efficient, full-wave numerical solution for
electromagnetic problems. The finite difference frequency domain is
simple in formulation and most flexible in modeling arbitrarily shaped
inhomogeneously filled and anisotropic scatterers [20–22].

Maxwell’s curl equations in frequency domain can be written as:

∇× Etotal = −jωµHtotal

∇× Htotal = (jωε + σ) Etotal (1)

Defining the total fields as the sum of the incident and the scattered
fields:

Etotal = Einc + Escat, and Htotal = Hinc + Hscat (2)

where Einc, and Escat are the incident and the scattered field,
respectively. The incident field is the field which propagates in
computation domain when no scatterers exist. If the background of the
computation domain is free space, then the incident fields are defined
by the equations:

∇× Einc = −jωµoHinc, and ∇× Hinc = jωεoEinc (3)

Then Maxwell’s curl equations can be rewritten as:

∇× Einc + ∇× Escat = −jωµHinc − jωµHscat (4)
∇× Hinc + ∇× Hscat = (jωε + σ) Einc + (jωε + σ) Escat (5)

From Equations (3), (4), and (5)

∇× Escat + jωµHscat = jω (µo − µ) Hinc (6)
∇× Hscat − (jωε + σ) Escat = (jω (ε − εo) + σ) Einc (7)
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Decompose the vector equations to x, y, and z components and obtain
six scalar equations. These equations are used to construct the 2D and
3D finite-difference frequency-domain method equations by replacing
the partial derivatives with the center-difference approximation and
introducing the subdivisions of space into cells of size ∆x, ∆y, and
∆z. A finite volume of space consisting of Nx, Ny and Nz cells must
contain both the scattering object and a sufficiently thick layer of free-
space or “white space” separating the boundaries of the object on all
sides from the boundaries of the cell space. The outer boundary of
the cell space is designed to absorb any energy incident upon it, by
imposing the PML layers [23]. More details about the FDFD can be
found in [20–22]. A general MATLAB code based upon the above
analysis were developed by the authors. All evaluations presented here
are performed on a Pentium IV at 3.2 GHz with 2 GB of RAM.

The term Particle Swarm Optimization (PSO) refers to a relatively
new family of algorithms that may be used to find optimal (or near
optimal) solutions to numerical and qualitative problems. The PSO
was introduced to the antenna engineering community by Robinson
and Rahmat-Samii [24]. The basic principles in PSO are very simple.
A set of moving particles (the swarm) is initially “thrown” inside the
search space. Each particle has the following features: i) It has a
position and a velocity. ii) It knows its position and the objective
function value for this position. iii) It knows its neighbors, best
previous position and objective function value. iv) It remembers its
best pervious position. At each time step, the behavior of a given
particle is a compromise between three possible choices: i) To follow
its own way. ii) To go towards its best previous position. iii) To go
towards the best neighbor’s best previous position, or towards the best
neighbor. The ith particle of the swarm can be represented by a D-
dimensional vector, Xi = (xi1, xi2, . . . , xiD)T . The velocity (position
change) of this particle, can be represented by another D-dimensional
vector Vi = (vi1, vi2, . . . , vid)T . The best previously visited position of
the ith particle is denoted as Pi = (pi1, pi2, . . . piD)T . Defining “g” as
the position of the best particle in the swarm (i.e., the g-th particle is
the best), this compromise is formalized by the following equations:

vn+1
id = vn

id + crn
1 (pn

id − xn
id) + crn

2

(
pn

gd − xn
id

)
(8)

xn+1
id = xn

id + vn+1
id (9)

where d = 1, 2, . . . , D; i = 1, 2, . . . , N , and N is the size of the swarm;
c is a positive constant, called acceleration constant; r1, r2 are random
numbers, uniformly distributed in [0,1]; and n = 1, 2, . . . determine the
iteration number. A detailed discussion of the particle swarm optimizer
used in this paper is provided in [24].
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By starting from a defined residual as the difference between the
calculated scattered field, Escat and the measured scattered field, Emeas,
as

Ediff = Escat − Emeas (10)

The optimization will then be performed on the square norm F

F = ||Escat − Emeas||2 = min, (11)

The goal is then to find the global minimum of this function.

3. MODEL OF THE BREAST

The adult female human breast consists of two main tissue types.
Adipose tissue stores fat in adiposities, large lipid-filled cells, and
makes up the vast majority of the breast, while glandular structures
allow for milk production and transport. The glandular tissue
comprises a network of lobules and branching epithelial ducts, which
connect the network that allows for milk delivery. In addition, systems
of vascular, connective, and neural tissues reside among the glandular
and fat structures. The connective tissues are often referred to as the
breast stoma.

Breast tissue

Glandular

Tumor 

Skin 

Glandular 

Skin 

Ground plane

Chest wall

Breast tissue 
Tumor 

(a) (b)

Figure 1. Two dimensional and three dimensional breast models, (a)
the 2D model of the breast, (b) the 3D model of the breast.

In this paper, the 2D model of the breast is considered as an
infinite inhomogeneous dielectric cylinder covered by a layer of skin.
The cylinder axis is parallel to the z axis and its diameter is 100 mm.
The model includes randomly distributed fatty breast tissue, glandular
tissue, and 1.6 mm thick skin, as shown in Fig. 1(a). In the 3D model,
the woman lies on her stomach with the breast naturally extending
through a hole in the examination table (infinite size conducting
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ground plane). The breast is a hemisphere with 75 mm in diameter.
The model includes randomly distributed fatty breast tissue, glandular
tissue, 5.3 mm thick skin, as well as chest wall, as shown in Fig. 1(b)
and according to the anatomy of the breast given in [25, 26]. At
800 MHz, the relative permittivity “εr” and electrical conductivity “σ”
for normal mammary tissues are around εr ≈ 16 and σ ≈ 0.16 s/m,
respectively, while they are εr ≈ 57.2 and σ ≈ 1.08 s/m, respectively,
for a malignant breast tumor [3, 27]. The contrast is 3.75 for the
relative permittivity and 6.75 for the electrical conductivity. This high
contrast gives rise to a large electromagnetic scattering signal when
electromagnetic waves are applied to malignant tumor embedded in
a normal tissue. The skin properties εr ≈ 36 and σ ≈ 4 s/m [2].
The chest wall properties in this paper is quite close to the properties
of the tumor with the same percentage as in [28]. The mammary
gland parameter is increased to 15% higher than the normal breast
tissue [29]. The dielectric properties incorporated in the FDFD models
are summarized in Table 1.

Table 1. Dielectric properties of breast tissues at frequency 800 MHz.

Tissue Dielectric properties
Permittivity (εr) Conductivity (σ)

Chest wall 57.2 2.1
Fatty breast tissue 16 0.16
Glandular tissue 18.4 0.184

Skin 36 4
Tumor 57.2 1.08

4. NUMERICAL RESULTS

In this section, numerical results of computer simulations that have
been performed to assess the capabilities of the proposed approach
have been reported and discussed. Due to the absence of the measured
data, the FDFD technique is used to synthesize the measured scattered
field values for the computation of forward solution. The scatterer is
characterized by the dielectric properties of the normal breast tissue
and malignant tissue at 800 MHz as given in Table 1. The domain is
divided into equal sized sub cells. Inside this domain small malignant
tissues have been embedded varied locations are represented by the
dark shaded cells in all figures.
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4.1. The 2D Results

The incident plane wave is assumed to be propagating in the direction
normal to z-axis with the electric field vector polarized along the z
axis which is taken to be parallel to the cylinder axis. The domain
size that is used with the FDFD is 16 × 16 cm. The cell size is
∆x = ∆y = 1.6 mm, and the thickness of the PML layer is 10 cells. The
swarm size that is used for the PSO is 30, and the number of iterations
is 1000. Fig. 2 shows the construction of the breast after the hybrid
method is used to detect and determine the positions of the tumors.
A tumor (εr = 57.2, σ = 1.08 S/m) modeled as a square with side
length of 1.6 mm was moved in different positions inside the breast
model. Assuming the size of the tumor is fixed. The FDFD/PSO
hybrid algorithm detected the position of the tumor in each case by
searching only for the coordinates of the tumor. Then the size of the
tumor is allowed to vary and the hybrid algorithm will have two goals
to search for which are the coordinates of the tumor as well as the size
of it. Fig. 3 shows different sizes of the tumor in different positions
inside the breast which were explored by the FDFD/PSO algorithm.
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Figure 2. The location of the tumor for different cases in the 2D case.
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Figure 3. Different shapes of the tumor in different positions in the
2D case.

4.2. The 3D Results

The FDFD/PSO algorithm is used with the 3D breast model. The
FDFD domain is 16 × 16 × 16 cm, the cell size is ∆x = ∆y = ∆z =
5.3 mm, the breast has a diameter 75 mm, and the skin is 5.3 mm thick
and the thickness of the PML layer is 5 cells. In the 3D case the FDFD
requires a huge sparse matrix to be inverted and this require longer
time for iteration than the 2D case, so the goal of the PSO will be
restricted here to find the coordinates of the tumor in the 3D breast
model. The swarm size of the PSO is 20 and the number of iterations

Tumor Tumor
 

(a) (b)
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Figure 4. The location of the tumor in the 3D breast model, (a)
the tumor very near to the chest wall, (b) the tumor near to the skin,
(c) the tumor in the center of the breast, (d) the tumor inside the
glandular.

that are used are 1000 Iterations. Fig. 4 shows the tumor positions
in the breast model, near to the chest wall, near to the skin, in the
center of the breast, and inside the glandular. In Figs. 2, 3 and 4, the
malignant tissues, positions and their sizes, are inserted in the domain
(2D model or 3D model) and the scattered field from the breast model
is calculated as a forward problem using the FDFD method. The above
scattered field is used to synthesize the measured scattered field values.
Using the hybrid solution (FDFD/PSO) to find the position and the
size of the maligant tissues as an inverse problem. The accuracy of
the hybrid solution is excellent to get the same results as in forward
problem. In all cases, the FDFD/PSO algorithm was able to find the
proper position of the tumor.

5. CONCLUSION

In this paper, a proposed hybrid technique based on finite-difference
frequency domain and particle swarm optimization technique is used
for breast cancer detection. This technique is able to calculate the
dimension and determine the position of the cancer in its early stage.
Two-dimensional and three-dimensional models for the breast are used.
The models include randomly distributed fatty breast tissue, glandular
tissue, skin, as well as chest wall. They are characterized by the
dielectric properties of the normal breast tissue and malignant tissue.
Numerical results have been reported for two and three dimensional
model. Results prove the possibility for attaining the localization and
the size of the cancer inside the breast. The results are preliminary
but promising.
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