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Abstract—A rigorous solution of the homogeneous Maxwell equations
for hybrid modes of a microwave cylindrical cavity with a transverse
annular slot in the perfectly conducting walls of arbitrary thickness
and a plane infinite anisotropic dielectric passing through the slot is
constructed based on eigenfunction expansion. In each of the field
existence regions (the cavity itself, the interior of a slot and outer
space), the field solution is constructed as a superposition of natural
piecewise harmonic and exponential modes that allow for reflection and
refraction at the plane boundaries of the dielectric. The dependence of
the complex wave number of free oscillations of a resonant system on its
geometrical parameters and on complex permittivity of the dielectric
is investigated. It is shown that a cylindrical cavity with a transverse
annular slot is a stable and high-sensitive system for online measuring
of dielectric parameters.

1. INTRODUCTION

Cavity and waveguide perturbation techniques are widely used for
dielectric measurements at microwave frequencies, when a sample
under study is inserted into a cavity resonator or into a waveguide,
and its permittivity, permeability or another physical parameters (for
instance, bulk density or moisture content) is determined by measuring
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of field parameters [1–8]. Theoretical modeling of such techniques is
usually simplified considering closed waveguides or resonators [2–6].
However, for control systems of continuous industrial prosesses, one
should provide permanent feed of new samples of a material. It is
possible only for slotted resonant or waveguiding systems. Strictly
speaking, such systems should be considered as open, and this
complicates theoretical consideration. In addition, one should take
into account the presence of a dielectric insert passing through a slot,
modifying the methods using for modeling of empty slotted systems
(see, for example, [9–12]). The aim of this work is to determine
electromagnetic field parameters in a cylindrical cavity resonator with
a transverse annular slot and a plane infinite dielectric, passing through
the slot. Such a cavity is a main working element of the microwave
sensor for online measuring of moisture content of sheet materials
(paper, cardboard, fabric) [8]. It uses the effect of strong influence
of the material moisture content on its dielectric permittivity [13, 14].
The theoretical model of electromagnetic field calculation for such a
cavity is presented in [15]. However, this model is approximate, since
it assumes slot field as determined a priory on the basis of nonrigorous
qualitative considerations. Moreover, this model does not take into
account the energetic conditions on a slot. As it was shown in our
previous paper [16], one must take into consideration these conditions,
calculating field parameters for internal oscillations in resonant systems
with slots. In [16], the empty cylindrical cavity with a transverse
annular slot is considered. In the present paper, the developed method
is extended on the case when a plane infinite dielectric passes through
the slot.

The problem of cavity excitation can be rigorously solved if the
inhomogeneous Maxwell equations involve external currents describing
explicitly field sources [17, 18]. The total excited field is sought in the
form of expansion in modes of the resonant system, which are solutions
of the homogeneous Maxwell equations and describe eigenoscillations of
a system [17, 18]. However, in centimeter- and decimeter-wave cavities,
the eigenfrequency spectrum is usually rather sparse [18], and their
resultant exited field differs little from the field of one mode. Therefore,
in the given work we may use an approximate representation for the
excited resonant field in the form of one eigenmode, but the field of
this mode will be sought as a rigorous solution of the homogeneous
Maxwell equations.

The problem of determination of calculation parameters of free
oscillation in a slotted cavity can be interpreted as a diffraction problem
for a certain eigenmode of a closed cavity by the slot. For its solution
we can use the partial regions (mode matching) method [4, 12, 19–
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21]. There are another methods for modeling of microwave slotted
systems (see, for example, [10, 11, 22]), but it is very close to the
standard method of the rigorous diffraction theory [17, 23]. According
to this method, the entire space where the field exists is divided into
separate regions, for which the field is constructed as a superposition
of elementary modes or partial solutions of the Maxwell equations in
the region. In the presence of a dielectric, the field reflection and
refraction at its boundaries also must be taken into account. For this
purpose one should introduce additional subregions whose boundaries
coincide with the boundaries of a planar dielectric, and should match
the tangential field components at these boundaries. However, in [24]
another method of field calculation for slot diffraction with a dielectric
is proposed. In this method, the field representation uses piecewise
harmonic and exponential modes, which initially satisfy all necessary
conditions at plane boundaries of the dielectric, and allow for reflection
and refraction at its boundaries. Thereby, it is no longer necessity
to introduce additional subregions. In this work such approach is
developed in application to resonant diffraction problem.

2. REPRESENTATION OF FIELDS IN VARIOUS
REGIONS

Let us consider a cylindrical cavity with the perfectly conducting walls
of finite thickness. It will be supposed that its axis coincides with the z
direction of cylindrical coordinate system (ρ, ϕ, z), and the boundaries
of the lateral walls coincide with the surfaces ρ = Rin and ρ = Rout

(Fig. 1). Just as in papers [15, 16], it will be assumed for simplifying
the problem that the cylindrical lateral walls are extended beyond the
planar walls z = ±L to infinity. The latter assumption gives us the
possibility to ignore diffraction by the exterior circular edges of the
cavity, which becomes insignificant compared with main diffraction by
the slot.

Let an infinite dielectric with the plane boundaries z = s±h passes
through the slot with the borders z = ±l, where 2h is the thickness of
a dielectric, s is its vertical displacement in respect to the slot center
z = 0. We suppose the dielectric is anisotropic and its dielectric tensor
in Cartesian system (x, y, z) (Fig. 1) is

ε̂ =

[
εo 0 0
0 εo 0
0 0 εe

]
(1)

We admit an appreciable difference between the diagonal components
εo and εe and their imaginary values (presence of absorption). Similar
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Figure 1. Cylindrical cavity with a transverse annular slot and a
plane infinite dielectric. Rin and Rout are the inner and outer radii of
the conducting cylindrical walls, L is the half-height of the cavity, l is
the half-width of the slot, s is the vertical displacement of the dielectric
along z axis from the middle of the slot.

dielectric properties are typical of paper [13, 14].
The diffraction problem for the considered resonant system is

to determine the electromagnetic field of internal oscillations excited
in the system at a frequency, which is closed to the eigenfrequency
of the same but solid cavity without a dielectric. The frequency of
oscillation of the system as a whole is a priory unknown, and it must
be determined in the solving of the problem. It will be assumed that
the field is monochromatic, and its time dependence is specified by
factor exp(−iωt) (hereafter omitted), where i =

√−1 is the imaginary
unit. We also require that the electric and magnetic fields are periodic
functions of azimuthal coordinate ϕ. Then, their spatial components
can be expressed in terms of two complex scalar functions u and
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ū [17, 23]

Eρ(ρ, ϕ, z) =
(
− ikm

ρ
u+

∂2ū

∂ρ∂z

)
sinmϕ

Hρ(ρ, ϕ, z) =
(
∂2u

∂ρ∂z
− ikm

ρ
εo(z)ū

)
cosmϕ

(2a)

Eϕ(ρ, ϕ, z) =
(
−ik∂u

∂ρ
+
m

ρ

∂ū

∂z

)
cosmϕ

Hϕ(ρ, ϕ, z) =
(
−m
ρ

∂u

∂z
+ ikεo(z)

∂ū

∂ρ

)
sinmϕ

(2b)

Ez(ρϕ, z) =
(
∂2ū

∂z2
+ k2εo(z)ū

)
sinmϕ

Hz(ρ, ϕ, z) =
(
∂2u

∂z2
+ k2εo(z)u

)
cosmϕ

(2c)

These functions specify H and E polarizations of the electromagnetic
field and are the longitudinal components of the magnetic and the
electric Hertz vectors [23]. They must satisfy the cylindrical Helmholtz
equations [23, 25]

1
ρ

∂

∂ρ

(
ρ
∂u

∂ρ

)
− m2

ρ2
u+

∂2u

∂z2
+ k2εo(z)u = 0

1
ρ

∂

∂ρ

(
ρ
∂ū

∂ρ

)
− m2

ρ2
ū+ εe(z)

(
ε−1
o (z)

∂2ū

∂z2
+ k2ū

)
= 0

(3)

In Equations (2) and (3), k = ω/c is the wave number (c is the
speed of light), m is the integer number of field periods which
total azimuthal coordinate 2π accommodates, εo(z) and εe(z) are the
piecewise constant functions equal to the components of the tensor (1)
inside the dielectric or unity outside it.

We consider so-called azimuthal-inhomogeneous or hybrid modes
of cavity free oscillations with m �= 0, for which H and E polarization
components are presented at the same time. Such complex field
structure is consequence of its diffraction by the slot edges, when the
boundary conditions on these edges can be satisfied only under joint
consideration of two field functions u and ū simultaneously [23].

The wave number k = ω/c and frequency ω of field oscillations in
a cavity are complex-values, and their imaginary parts are negative,
been ensure oscillation decay in time domain owing to energy losses
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by radiation through a slot and by absorption in the dielectric. Real
and imaginary parts of these values determine resonant frequency f
and quality Q-factor of a resonant system according to the following
relations [17]

f = cRek/2π; Q = Rek/2|Imk|. (4)

The boundary conditions for fields (2) in our resonant system
will be the same as for the empty cavity without of a dielectric [16].
They are determined by requirements for the tangential electric field
components to be vanish on conducting surfaces and for all tangential
components (2) to be continuous on the boundaries of a slot ρ = Rin

and ρ = Rout at −l < z < l. In the presence of a dielectric they
should be added by the conditions of the tangential field component
continuity on its plane boundaries.

The field-propagation space will be divided into the same three
regions as in the case of absence of a dielectric [16]. They will be the
cylindrical region of resonant excitation (0 ≤ ρ ≤ Rin, −L ≤ z ≤ L),
the interior of the circular slot (Rin ≤ ρ ≤ Rout, −l ≤ z ≤ l) and the
infinite ambient region (ρ ≥ Rout). In each of the above regions, we
shall construct field functions u and ū by analogy of the case of the
empty resonant system [16]. They will be represented as superpositions
of partial solutions of Equations (3) or normal modes of a given region,
which allow for reflection and refraction at the boundaries of the
plane dielectric [24]. For the field in the resonant excitation region
(0 ≤ ρ ≤ Rin, −L ≤ z ≤ L), such representation may be written in the
form of

u =
i

k

∞∑
n=1

An
Jm(αnρ)

αnJ ′
m(αnRin)

fn(z) ū = m

∞∑
n=1

Ān
Jm(ᾱnρ)

ᾱ2
nJm(ᾱnRin)

f̄n(z)

(5)

were Jm is the Bessel function of the first kind, and the prime denoting
the derivative of this function with respect to its argument αnRin, An

and Ān are the unknown amplitudes of resonant normal modes, and
functions

fn(z)=



CnP

−
n sinβn(L− z), if s+ h ≤ z ≤ L

Cn cos(γn(z − s) − Ψn), if s− h ≤ z ≤ s+ h
CnP

+
n sinβn(L+ z), if − L ≤ z ≤ s− h

f̄n(z)=



C̄nP̄

−
n cos β̄n(L− z), if s+ h ≤ z ≤ L

C̄nβ̄nγ̄
−1
n sin(γ̄n(z − s) − Ψ̄n), if s− h ≤ z ≤ s+ h

C̄nP̄
+
n cos β̄n(L+ z), if − L ≤ z ≤ s− h

(6)
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determine the dependence of every mode field on the axis coordinate
z, which is normal to the boundaries of a dielectric,

αn =
√
k2 − β2

n; γn =
√
k2(εo − 1) + β2

n;

ᾱn =
√
k2 − β̄2

n; γ̄n =
√
εoε

−1
e [k2(εo − 1) + β̄2

n].

Propagation parameters βn and β̄n both satisfy the transcendental
equation [(

θ2n + 1
)
cos 2βn(L− h) −

(
θ2n − 1

)
cos 2βns

]
sin 2γnh

+2θn sin 2βn(L− h) cos 2γnh = 0 (7)

where θn = γn/βn for H polarization and θn = εoβ̄n/γ̄n for E
polarization. The remaining parameters are determined in terms of
βn and β̄n through expressions:

Ψn =
i

2
ln

(
1−Φn exp(2iβn(L−s−h))

1−Φn exp(−2iβn(L−s−h))

)
+γnh+βn(L−s−h)−π/2

(8a)

Φn = (θn − 1)/(θn + 1)

P±
n = cos(γnh±Ψn) sinβn(L±s−h)+θn sin(γnh±Ψn) cosβn(L±s−h)

(8b)

(in the formulas that apply simultaneously to the parameters of the
fields both withH and E polarizations, the bar distinguishing those for
the latter polarization is hereafter omitted). The first functions (6) of
H polarization form the orthogonal system in the interval −L ≤ z ≤ L∫ L

−L
fn(z)fm(z)dz = Lδnm

and coefficient L before Kroneker symbol δnm in the right-hand side
is conditioned by the choice of normalization amplitude factors Cn of
functions (6) (see [24], where the similar factors are denoted as qn). The
second functions (6) of E polarization satisfy the same orthogonality
relations but with the additional weight factor ε2o(z)ε

−1
e (z) under the

integration symbol.
The analogous representation can be used for the field inside the

slot (Rin ≤ ρ ≤ Rout, −l ≤ z ≤ l):

u = ik−1
∞∑
i=1

σ−1
i vi(ρ)gi(z); ū = m

∞∑
i=1

σ̄−2
i v̄i(ρ)ḡi(z) (9)
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where

vi(ρ) = aiH
(2)
m (σiρ) + biH

(1)
m (σiρ) v̄i(ρ) = āiH

(2)
m (σ̄iρ) + b̄iH

(1)
m (σ̄iρ)

(10)

ai, bi, and āi, b̄i are the amplitudes of the normal slot modes of H
and E polarizations, propagating in the opposite directions of the ρ
axis, H(1,2)

m are the Hankel functions of the first and the second kind,
σi = (k2 − ξ2i )1/2, σ̄i = (k2 − ξ̄2i )1/2 and ξi, ξ̄i are the propagation
parameters of modes in the ρ and z directions. In (9), functions gi(z)
and ḡi(z) describe the dependence of the normal mode fields on the
z coordinate, and their parameters will be determined by the same
expressions (6)–(8) where resonant mode parameters βn, γn, αn, Cn,
P±

n , Ψn are replaced with the corresponding slot parameters [24], as
well as half-height L is replaced with half-width l of the slot in them.

In the ambient cylindrical region out of a cavity (ρ ≥ Rout),
the field can freely propagate along the z direction, therefore, in this
region it should be constructed as a continuous spectrum of standing
modes and a limited discrete spectrum of waveguide modes of a plane
dielectric

u =
i

k

∫ +∞

0

H
(1)
m (αρ)

αH
(1)
m

′
(αRout)

[As(β)fs(βz) +Aa(β)fa(βz)]dβ

+
i

k

K∑
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H
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m (αζρ)wζ(z)

αζH
(1)
m

′
(αζRout)

(11a)

ū = m

∫ +∞

0

H
(1)
m (αρ)

α2H
(1)
m (αRout)

[Ās(β)f̄s(βz) + Āa(β)f̄a(βz)]dβ

+m
K̄∑

ζ=1

B̄ζ
H

(1)
m (ᾱζρ)w̄ζ(z)

ᾱ2
ζH

(1)
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(11b)

where

α =
√
k2 − β2, αζ =

√
k2 + τ2

ζ , ᾱζ =
√
k2 + τ̄2

ζ (12)

As,a(β) and Ās,a(β) are the amplitudes of symmetric and antisymmet-
ric modes along the z direction for H and E polarizations, and the
prime at the Hankel function denoting the derivative of this function
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with respect to its argument αRout. Functions fs,a(β, z), which char-
acterize the z dependence of the standing wave fields, are represented
as [24]

fs,a(β, z)=

{cos[β(z − s− h) + ψs,a − ψ0], if z ≥ s+ h
ps,a cos[γ(z − s) − ψ0], if s−h≤z≤s+h
cos[β(z − s+ h) − ψs,a − ψ0], if z ≤ s− h

f̄s,a(β, z)=




sin[β(z − s− h) + ψ̄s,a − ψ̄0], if z ≥ s+ h
p̄s,aβγ̄

−1 sin[γ̄(z − s) − ψ̄0], if s−h≤z≤s+h
sin[β(z − s+ h) − ψ̄s,a − ψ̄0], if z ≤ s− h

(13a)

where parameters γ, ψ and p are defined as functions of mode
propagation constant β outside the dielectric,

γ =
√
k2(εo − 1) + β2; γ̄ =

√
εoε

−1
e [k2(εe − 1) + β2]

ψ = γh+
i

2
ln

(
1 − Φ exp(2iγh+ 2iψ0)

1 − Φ exp(−2iγh+ 2iψ0)

)

p = cos(ψ + ψ0) cos(γh+ ψ0) + θ−1 sin(ψ + ψ0) sin(γh+ ψ0)

ψ0 = 0 for symmetric H modes and antisymmetric E modes, and
ψ0 = π/2 for antisymmetric H modes and symmetric E modes,
Φ = (θ − 1)/(θ + 1), θ = γ/β for H modes and θ = εoβ/γ for E
modes. The fields of waveguide modes exponentially decay away from
the boundaries of the dielectric,

wζ(z)=



χ−ζ exp[−τζ(z − s− h)], if z ≥ s+ h
χζ cos[γζ(z − s) − ϕζ ], if s− h ≤ z ≤ s+h
χ+

ζ exp[τζ(z − s+ h)], if z ≤ s− h

w̄ζ(z)=




−χ̄−ζ exp[−τ̄ζ(z − s− h)], if z ≥ s+ h

χ̄ζ τ̄ζ γ̄
−1
ζ sin[γ̄ζ(z − s) − ϕ̄ζ ], if s− h ≤ z ≤ s+h

χ̄+
ζ exp[τ̄ζ(z − s+ h)], if z ≤ s− h

(13b)

where

χ±ζ = χζ cos(γζh± ϕζ) γζ =
√
k2(εo − 1) − τ2

ζ

γ̄ζ =
√
εoε

−1
e

[
k2(εe − 1) − τ2

ζ

]
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ϕζ = 0 for symmetric H modes and antisymmetric E modes and
ϕζ = π/2 for antisymmetric H modes and symmetric E modes, τζ and
τ̄ζ are the decay constants of waveguide modes out of the dielectric [24],
which must satisfy the dispersion equations

τζ cos(γζh∓ ϕζ) − γζ sin(γζh∓ ϕζ) = 0

for the H polarization, and

γ̄ζ cos(γ̄ζh± ϕ̄ζ) + εoτ̄ζ sin(γ̄ζh± ϕ̄ζ) = 0

for the E polarization;

χζ =
√

πτζ
1 + τζh

, χ̄ζ =

√
εeε

−1
o πτ̄ζ

εoτ̄3
ζ h+ k2(εe − 1) cos2(γ̄ζh− ϕ̄ζ)

are normalization amplitude factors, K = 1 + [2Re(kh{εo − 1}1/2)/π]
and K̄ = 1 + [2Re(kh{εo(1 − ε−1

e )}1/2)/π] are the numbers of H and
E waveguide modes (here the square brackets mean an integer part of
a number). Functions (13) form an orthogonal system∫ +∞

−∞
fs,a(β, z)fs,a

(
β̃, z

)
dz = πδ

(
β − β̃

)

∫ +∞

−∞
wζ(z)wξ(z)dz = πδζξ,

∫ +∞

−∞
fs,a(β, z)wζ(z)dz = 0

where δ(β) is the Dirac function. The system of functions for E
polarization is characterized by the similar orthogonality relations but
with the weight factor ε2o(z)ε

−1
e (z). It should be noted that under the

condition of finite magnitudes of field (11) at infinity, one should chose
the branch of square root (12) that has a nonnegative imaginary part,
and integration in (11) must be strictly along the real axis β [16, 24, 26].

3. CALCULATION RESULTS

The values of normal mode parameters are taken such that Helmholtz
Equations (3) are valid for fields (5), (9), (11) and they obey all
boundary conditions except the conditions on the cylindrical surfaces
ρ = Rin and ρ = Rout. These conditions gives possibility to determine
the normal mode amplitudes in each of three regions and to fined
complex wave number k of free resonant oscillations (see Appendix).
The solution of the diffraction problem obtained by the described
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technique can be viewed as rigorous, as well as it does not use
any approximation with reference to the geometrical parameters of
a system. It should be noted that the sources of field excitation are
not formally taken into account in our consideration. Thus, the field
determined by this way and considered as a whole, will be represent a
generalized hybrid mode of normal oscillations of a resonant system.
It is a field structure of a cylindrical cavity having both H and E
polarization components, into which one normal mode (5) transforms
after a slot is cut in it and a dielectric is inserted [15].

Let us consider the calculation results obtained in accordance with
the theoretical model proposed for the cylindrical cavity resonator with
parameters

L = 17.6 cm, l = 0.524 cm, h = 0.00502 cm,
Rin = 2.94 cm, Rout = 4.83 cm, (14)

which characterize real cavities used in devices measuring the moisture
content in sheet materials [8, 15]. Thickness 2h of the dielectric
corresponds approximately to the thickness of a paper sheet. It was
supposed that a frequency of free resonant oscillations is closed to the
frequency of the H115 mode of the same cylindrical cavity without a
slot (3671.611 MHz, wavelength λ = 8.171 cm), which corresponds to
the symmetrical excitation in z coordinate for the field components
Eρ and Eϕ. In this case, double component εo of tensor (1) has much
stronger effect on the field parameters than its single component εe. In
the computation, various values of complex dielectric permittivities εo
and εe have been employed. They were changed in the complex ranges
from 1 to 10 + 1.2i for εo and from 1 to 6.4 + 0.36i for εe, in order to
cover the possible values of the anisotropic permittivity components
of paper at its various moisture contents [13, 14]. Calculation results
exposed that the dependence of complex wave number k on dielectric
permittivity εo for resonant oscillations with a good accuracy can be
considered as a linear [15]

k0 − k = Ckε(εo − 1) (15)

where k0 is the complex wave number of resonant oscillations in an
empty cavity without of a dielectric, Ckε is a complex coefficient. Fig. 2
shows the last as a function of slot half-width l when difference L− l is
fixed at various magnitude of dielectric displacement s. It corresponds
to the change of the slot width just by the shift of cavity cylindrical
tumblers along the z direction. Obviously, value l must be greater than
value s. One can see from Fig. 2 that the dependence of coefficient
Ckε on the dielectric displacement inside a slot and on the shift of
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(a) (b)

Figure 2. The dependence of coefficient Ckε of linear relation k0−k =
Ckε(εo − 1) (15) on the half-width of the annular slot of a cavity
with parameters (14) at various values of vertical displacement s of
a dielectric from the middle of the slot. (a) ReCkε versus l, (b) ImCkε

versus l.

(c)

(a) (b)

Figure 3. Spatial distributions of electric field components (a) Eρ, (b)
Eϕ, and (c) Ez on the ρz plane of the cylindrical coordinate system
for the H115 hybrid mode of the resonant system shown in Fig. 1.
For the out-of-cavity fields (the lower parts of the panels), the field
magnitudes (vertical axis) are scaled up by a factor of 2000 compared
with the in-cavity and slot fields (the upper parts of the panels).
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cylindrical cavity halves is fairly moderately. Appreciable growth of
the imaginary part magnitude for this coefficient at s > 0 is caused
by violation of symmetry of a resonant system. At this condition, the
antisymmetric H modes together with the symmetric E modes appear
in the normal mode spectrum in each region. It leads to increasing
of energy losses in an absorbing dielectric. Additional calculations
showed that the dependence of complex coefficient Ckε on dielectric
thickness is strictly linear: the increasing of h at several times leads to
the increasing of Ckε at the same times.

Figure 3 shows the calculation results for the spatial distributions
of the magnitudes of various electric field components on the same scale
for the cavity with parameters (14) and with a plane dielectric (εo =
5.0 + 0.56i, εe = 3.4 + 0.16i) at s = 0. Because of ρ and z symmetry,
they are shown only in quarter-plane (ρ ≥ 0, z ≥ 0). Comparing
Fig. 3 with the corresponding figures for an empty cavity [16], one can
observe small influence of dielectric appearance on the total resonant
field picture. In the both cases, the power of field, which radiates out
of the cavity through a slot, is smaller by some order of magnitude
than the power of field inside the cavity.

4. CONCLUSION

An exact rigorous solution of diffraction problem for electromagnetic
field in a microwave cylindrical cavity resonator with a transverse
annular slot and a plane dielectric insert has been obtained by using
the expansions in eigenfunction of infinite and bounded regions with
a plane dielectric. With the aid of this solution, it was established
that such a cavity resonator is characterized by small radiation losses.
It has high stability as a device for dielectric measurements, because
extraneous fields are not able practically to influence on its internal
excitation field. Another advantage of the considered resonant system
is a high precision of dielectric measurements. It may be evaluated
on the basis of our results. For the cavity with parameters (14) at
s = 0, coefficient Ckε, describing linear dependence (15) of complex
wave number k on principal component εo of the dielectric permittivity,
is equal to 1.96651×10−4−1.678×10−7i. In addition, we can take into
account that for the paper sheet with thickness of 0.1 mm, the change
of moisture content by 1% in the range from 0 to 12%, causes the
change of its dielectric permittivity about by ∆εo = 0.24+0.02i [13, 14].
From here with the help of relations (4) and (15), one can evaluate,
that this change of moisture content causes the shift of resonant
frequency ∆f approximately by 200 kHz (at the main frequency near
3.6 GHz) and the relative change of quality factor ∆Q/Q about by
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3%. Correspondingly, the change of paper moisture content by 0.1%
will cause the following changes: ∆f ≈ 20 kHz and ∆Q/Q ≈ 0.3%.
Such changes of resonant parameters can be measured. Therefore,
the accuracy of paper moisture content measurements to 0.1% may be
considered as fully attainable for the cavity with an annular slot.
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APPENDIX A. DETERMINATION OF FIELD
PARAMETERS AND CALCULATION DETAILS

The mode amplitudes in all of three regions where the field exists, are
determined by the conditions at cylindrical boundaries ρ = Rin and
ρ = Rout. These conditions for tangential components of electric field
Eϕ (2b) and Ez (2c) gives possibility to express the amplitudes in the
exterior of a slot in terms of the slot interior amplitudes. Taking into
account representations (5), (9), (11), one can expand these conditions
in orthogonal function system (6), as well in fs,a(β, z), f̄s,a(β, z) and
in wζ(z), w̄ζ(z) at the boundaries of the corresponding regions. As a
result one can obtain

Ān =
l

L

∞∑
i=1

w̄
(in)
i Īni, An =

l

L

∞∑
i=1

(
w

(in)
i Ini + w̄
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i Qni

)
(A1a)
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π
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i Ī
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ζi (A1b)
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π
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[
w
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(s,a)
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i Q
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i (β)
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π
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(
w
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where

w̄
(in,out)
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are the linear combinations of the mode amplitudes,
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Here, values
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represent the overlap integrals for modes of various polarizations in the
same region, and values
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are the overlap integrals for modes in different regions. Singular
integrals appearing in these relations should be calculated in the
meaning of principal value [27].

Equations for the slot mode amplitudes can be derived from the
equality conditions for the tangential magnetic components, Hϕ (2b)
and Hz (2c), on both sides of the slot boundaries. It is more convenient
to solve these equations in values (A2) and then to calculate the slot
amplitudes. The deriving procedure for these equations and their
general view are quite similar to ones for the case of the empty cavity
without a dielectric [16]. From the truncation of the maximum order
of slot modes at natural number N , the system of such equations may
be written as

4N∑
j=1

Aijwj = 0, i = 1, 2, . . . , 4N (A3a)

where wi is an element of column matrix w composed of all unknowns
(A2) w(in)

i , w̄(in)
i , w(out)

i and w̄(out)
i (i runs integer values from 1 to N),

Aij is an element of the square matrix of the system

A =
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 (A3b)

Here, zero denotes the zero matrix, IT is the product of unit diagonal
matrix I and vector matrix T with elements Tjδij (δij is the Kronecker
delta),
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the notation L(in) = L and L(out) = π is used for short, and the
elements of the remaining square matrices are given by
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where indexes i and j run integer values from 1 to N ,
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i (β) = k2α−2Gm(αRout)Ī
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Here, F and G are the brief designation of functions
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m(x)/Jm(x) Gm(x) = xH(1)

m

′
(x)/H(1)

m (x)

We obtained the system of homogeneous Equations (A3), because
the homogeneous Maxwell equations were solved, and the sources of
field excitation were not taken into consideration formally. Applying
the Tikhonov regularization method [28] to these equations, one can
obtain a stable algorithm to determine unknown mode amplitudes
and complex wave number k. According to this method, instead of
directly solving system (A3), one sets up a problem of minimizing of
some functional. It is constructed as a sum of discrepancies for all
Equations (A3) with a regularization addend. In order to exclude
the solutions due to additional excitation sources in outer space, one
can add just one more addend, which is determined by direction
and magnitude of the energy flux through a slot [16]. The last
may be determined by a normal component of the complex Poynting
vector [17, 25]. All of the corresponding relations are adduced in [16].
We should noted only for one circumstance, which differs the case
under consideration from the case of an empty cavity [16]. In a lossy
dielectric, the Poynting vector cannot be connected unequivocally with
a flux energy vector [17, 25]. Thus, introducition of the corresponding
addend [16] into the functional, strictly speaking, is not physically
grounded. However, if a slot is occupied by dielectric only partly,
the energy flux in a free region may be used as an indicator of the
presence of outer excitation sources. Indeed, if the total energy flux is
directed from the environment into the cavity, then such sources must
be present. So it is acceptable for us to extend the energetic relations
of an empty cavity [16] to the case when a plane lossy dielectric is
present.

In the specific calculations, the maximum order of slot modes (9)
under consideration was N = 24, the number of modes in the interior
of a cavity was taken up to 500, and the continuous spectrum of out-
of-cavity modes (11) was approximated by a discrete distribution with
step ∆ = 0.04 on real axis β. Our computation took into account up to
1200 of such modes. As in [16], the integrals in matrix elements (A4)
were calculated approximately using a uniform grid for argument β
with step ∆ by the mid-ordinate rule [29]. But for computation of the
integrals in modes in outer region like (11), we applied the modification
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of this rule [26]. It takes into consideration the possibility of fast
oscillations for integrands at large magnitudes of ρ and z coordinates.
The computation of these integrals were carried out during the last
stage of the study, corresponding to determination of electric and
magnetic field components (2) in the regions of a resonant system.
In order to determine these fields pattern, we used Equations (2) and
representations (5), (9), (10), (11), and also the mode amplitudes,
calculated by relations (A1) with the solution for amplitude parameters
(A2).
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