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Abstract—The most difficult step in the analysis of the capacitance
of arbitrarily shaped conducting plates is the determination of the
electric center, or the expansion point of the charge density. This
paper presents the generalized Huygens’ principle, which indicates that
the charge distribution on a conducting plate of convex shape has a
tendency to be a circle before approaching the fringe. Therefore, the
center of the largest extended circle can be taken as the electric center.
The agreement with numerical methods is demonstrated.

1. INTRODUCTION

With the quick development of microwave communication, the line
between the technique of wave and the technique of circuit becomes
more and more obscure in engineering. We can not only add some
lumped elements to a distributed parameter filter, but also consider
distributed parameters in a lumped element system. Therefore, the
capacitance of conducting plates and the inductance of conducting
wires of arbitrary shape attract many scholars’ attention.

Two problems arise from the determination of the closed form for
the capacitance of the conducting plate. One is the charge distribution
on the plate, and another is the optimal expansion center of the charge
density, or what is called the electric center.

Reference [1] take a disc whose analytic results has been obtained
as an example. Considering that the charge density on the edge of the
disc is a singular distribution, namely

σ(r) =
σ0√

1 − (r/r0)
2

(1)
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Figure 1. Infinitely thin conducting disc.
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Figure 2. Symmetrical convex conducting plate.

We can obtain the accurate capacitance.

C0 =
Q

V
= 8ε0r0 =

2r0

9π
· 10−9F (2)

For a general symmetric conducting plate, the boundary curve
equation can be introduced. It is

r0

√
S(ϕ) = 1 (3)

And then the charge density is expanded at the symmetric center, so
we have

σ(r, ϕ) =
σ0√

1 − r2S(ϕ)
(4)

Finally, the closed form of the capacitance C is

C =
Q

V
= 8ε0

∫ π
2

0

dϕ

S(ϕ)

/∫ π
2

0

dϕ√
S(ϕ)

(5)
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Applying formula (5) to an elliptical disc, in which

S(ϕ) =
cos2 ϕ

a2
+

sin2 ϕ

b2
(6)

and b > a is supposed. So the capacitance of an elliptical disc is

C =
4πε0a

K(k)
·
(

b

a

)
F (7)

in which K(k) represents the complete elliptical functions of the first
kind with modulus k, and

k =
√

b2 − a2

b
(b > a) (8)

Formula (7) is also an accurate result by [2].

2. SELECTION OF THE ELECTRIC CENTER

The success of a closed form lies mainly in the fact that the assumed
singular distribution of the charge density is in accordance with the
practical distribution. However, the determination of the electric
center remains to be a problem. Different electric center may lead
to different results.
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Figure 3. Disc with eccentric center.

Figure 3 shows a conducting plate expanded at an eccentric center.
And the equation of which is

(x − x0)2 + y2 = a2 (9)

Another equation can be obtained by normalized polar coordinate.
It is

(r̄0 − x̄0 cos ϕ)2 + x̄2
0 sin2 ϕ = 1 (10)
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in which r̄0 = r0/a and x̄0 = x0/a are normalized values. Note that r̄0

and r0 are both on the fringe of the disc. So the function of the charge
density of the disc is

σ(r, ϕ) =
σ0√

1 − (x̄0 sin ϕ)2 − (r − x̄0 cos ϕ)2

=
σ0√

1 − (x̄0 sin ϕ)2
√

1 −
[

r̄−x̄0 cos ϕ
1−(x̄0 sin ϕ)2

]2

(11)

in which r is a variable and r ≤ r0.
In this case, the original quarter symmetry of the disc has turned

to be a half even symmetry, and the potential V at the eccentric center
O is

V =
2σ0a

4πε0

∫ π

0
dϕ

∫ (r̄0−x̄0 cos ϕ)√
1−(x̄0 sin ϕ)2

0

du√
1 − u2

=
πaσ0

4ε0
(12)

Note that (r̄0 − x̄0 cos ϕ) =
√

1 − (x̄0 sin ϕ)2 has been taken into
account in the derivation process of the formula above.

Besides, the total charge Q is

Q = 2a2σ0

∫ π

0
dϕ

∫ r̄0

0

r̄dr̄√
1 − (x̄0 sin ϕ)2

√
1 −

[
(r̄−x̄0 cos ϕ)
1−(x̄0 sin ϕ)2

]2

= 2a2σ0

[∫ π

0

√
1 − (x̄0 sin ϕ)2dϕ +

∫ π

0
x̄0 cos ϕdϕ

∫ 1

0

du√
1 − u2

]
(13)

= 4a2σ0E(x̄0)

in which E(x̄0) is the complete elliptical integral of the second kind
with modulus x̄0.

Finally, the capacitance of the disc expanded at the eccentric
center is

C =
Q

V
= 8ε0a

[
E(x̄0)
π/2

]
F (14)

Figure 4 shows the functional relationship of the normalized
capacitance C̄ = C/C0 with the modulus x̄0, in which C0 = 8ε0a
is the capacitance obtained by expanding the charge at the center of
the disc.

The example forcefully demonstrates that the determination of the
electric center is of great importance. It is proved that the capacitance
is variational standing for the charge test function. Proper electric
center could lead to

max C (x̄0 = 0) (15)
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Figure 4. Relationship of capacitance C̄ = C/C0 with x̄0.

For symmetric objects like the disc, the geometrical center
coincides with the electric center. However, new methods for choosing
electric center must be given for objects of arbitrary shape.

3. LARGEST EXTENDED CIRCLE METHOD

Huygens’ principle is of special importance in electromagnetism. There
are two wonderful ideas. One is that every point at the wavefront
has wavelets. Another is that every wavelet transmits spherical waves
outwards. Huygens’ principle implies the most important idea, that is,
waves have a tendency to be a sphere, cylinder or circle without the
restriction of the boundary conditions.

In [3], Huygens’ principle is advanced further and generalized
Huygens’ principle is introduced. It means that the charge distribution
on a conducting plate tends to be concentric circles before reaching the
edge.

Whether be static field or dynamic field, wave or non-wave, this
property can be termed as electromagnetic inertia, just as Newton’s
mechanic inertia.

Therefore, we can put forward the selecting principle of the electric
center of a convex edged conducting plate. The electric center of
a convex edged conducting plate should be the center of its largest
extended circle, as shown in Figure 5.

This method can satisfy the free state of the charge distribution,
or being concentric circles, as much as possible.

4. EXAMPLES

The triangle plate of arbitrary shape is the most important and basic
example, whose largest extended circle is its encircle, as shown in
Figure 6.
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Figure 5. Center of largest extended circle.
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Figure 6. Arbitrary triangle plate.

r is the radius of the encircle. Let


x = BD = BF
y = CD = CE
z = AE = AF

(16)

∆ represents the area of the triangle, and the basic geometrical
relations is shown in Table 1.

If the center of the encircle is taken as the expansion center, the
triangle ∆ABC can be divided into three basic triangles, ∆OAB,
∆OBC and ∆OCA.

In which AB, BC and AC are the edges of the plate. The
capacitance of ∆ABC is

C =
3∑

i=1

Qi

/ 3∑
i=1

Vi (17)

in which Qi and Vi represent the charge and potential of the ith
triangle. In general, we establish the basic triangle OMN with MN as
the edge of the plate and ON and OM as the common edge between
different triangles, as shown in Figure 7.
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Table 1. Basic geometrical relations in a triangle.

S =
1
2
(a + b + c)

r =
∆
S

r1 =
√

x2 + r2

r2 =
√

y2 + r2

r3 =
√

z2 + r2

x
o

y

l

M

N

2r

1r
1ϕ

0ϕ

0x

Figure 7. Basic triangle MON .

Under this condition the charge distribution function expanded at
point O is

σ(r, ϕ) =
σ0√

1 −
(

x
x0

)2
=

σ0√
1 −

(
r cos ϕ

x0

)2
(18)

and the potential Vi of the ∆OMN at the center is

Vi =
1

4πε0

∫ ϕ1+ϕ2

ϕ1

dϕ

∫ r0

0

σ0dr√
1 −

(
r cos ϕ

x0

)2

=
σ0x0

8ε0

{
1
2

ln
[
1 − sin ϕ1

1 + sin ϕ1
· 1 + sin(ϕ1 + ϕ0)
1 − sin(ϕ1 + ϕ0)

]} (19)
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in which, 


sin ϕ1 =
r2 cos ϕ0 − r1

l

sin(ϕ1 + ϕ0) =
r2 − r1 cos ϕ0

l

tan ϕ1 =
r2 cos ϕ0 − r1

r2 sin ϕ0

tan(ϕ1 + ϕ0) =
r2 − r1 cos ϕ0

r1 sin ϕ0

(20)

On account of

cos ϕ0 =
r2
1 + r2

2 − l2

2r1r2
(21)

1
2

ln
[
1 − sin ϕ1

1 + sin ϕ1
· 1 + sin(ϕ1 + ϕ0)
1 − sin(ϕ1 + ϕ0)

]
= ln

[
r1 + r2 + l

r1 + r2 − l

]
(22)

that is
Vi =

σ0x0

8ε0
ln

(
r1 + r2 + l

r1 + r2 − l

)
(23)

Similarly, the charge Qi of the ∆MON is

Qi =
∫ ϕ1+ϕ0

ϕ1

dϕ

∫ r0

0
σr

/√
1 −

(
r cos ϕ

x0

)2

dr

= σ0r1r2 sin ϕ0

(24)

in which
x0 =

r1r2 sin ϕ0

l
(25)

In the original triangle ABC, considering x0 equals the radius of the
encircle and formula (17), the capacitance of the triangle ∆ABC is

C =
8ε0(a + b + c)

ln
(

r1+r2+a
r1+r2−a

)
+ ln

(
r2+r3+b
r2+r3−b

)
+ ln

(
r3+r1+c
r3+r1−c

) (26)

Formula (26) represents the capacitance of the conducting plate with
the center of the encircle of the triangle as the electric center. Table 2
shows the comparison of the capacitances of the triangles obtained by
formula (26) and by the moment method [3–6]. It demonstrates that
the relative error is less than 3%.

Note that there are more than one largest extended circle for
some plates of arbitrary shape. In this case, a more symmetric center
should be adopted. Take the parallelogram conducting plate ABCD
in Figure 8 for example. There are many largest extended circles, but
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Table 2. Comparison of capacitances of different triangles by two
methods.

Different
triangles

Incircle

electric
center

aC 08/

Moment

aC 08/

Relative
error

0

0

C

CC
C

A

CB
45 45

a a

a2

0.41524 0.42797 -0.02975

A

B C
45 60

75a2 a332

a)331(

0.51670 0.53054 -0.02609

A

B C
45

15

120

a2
a332

a)331(

0.30593 0.31500 -0.02877

=
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ε
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Figure 8. Largest extended circle of parallelogram.

the one whose center is in accordance with the symmetric center O
should be adopted.

Similarly we lead to

C = 0.617075033 · 8ε0a
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C0 = 0.62935 · 8ε0a

δC = −1.950%

and the two values are in good agreement with each other.

5. CONCLUSION

The difficulty to determine the closed form of the capacitance of a
conducting plate of arbitrary shaped lies mainly in the selection of the
electric center, or the charge expansion point.

In this paper, generalized Huygens’ principle that the charge
distribution has a tendency to be concentric circles as much as possible
is introduced. Therefore, it is proper to take the center of the largest
extended circle as the electric center. And it is fully proved by the
practical examples.

REFERENCES

1. Liang, C. H., L. Li, and H. Q. Zhi, “Asymptotic closed form for
the capacitance of an arbitrarily shaped conducting plate,” IEE
Proc.-Microw. Antennas, Vol. 151, No. 3, 217–220, June 2004.

2. Stratton, J. A., Electromagnetic Theory, McGraw-Hill, New York,
1941.

3. Harrington, R. F., Field Computation by Moment Methods, IEEE
Press, New York, 1993.

4. Cheng, D. K. and C. H. Liang, “Thinning technique for moment
method solutions,” Proc. IEEE, Vol. 71, No. 2, 265–266, 1983.

5. Bancroft, R., “A note on the moment method solution for the
capacitance of a conducting flat plate,” IEEE Trans. Antennas
Propag., Vol. 45, No. 11, 1704, 1997.

6. Kuo, J. T. and K. Y. Su, “Analytical evaluation of the mom matrix
elements for the capacitance of a charged plate,” IEEE Trans.
Microw. Theory. Tech., Vol. 50, No. 5, 1435–1436, 2002.

7. Collin, R. E., Field Theory of Guided Waves, McGraw-Hill, New
York, 1960.

8. Shumpert, T. H. and D. J. Galloway, “Capacitance bounds and
equivalent radius,” IEEE Trans. Antennas Propag., Vol. 25, No. 2,
284–286, 1977.

9. Wang, C. F., L. W. Li, P. S. Kooi, and M. S. Leong, “Efficient
capacitance computation for three-dimensional structures based
on adaptive integral method,” Progress In Electromagnetics
Research, PIER 30, 33–46, 2001.


