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Abstract—A deep analysis of the directivity enhancement, due to the
insertion of a simple linear antenna into a dielectric EBG, is presented.
The operative frequency is chosen near a band-gap edge. The plane-
wave expansion method is used in order to obtain the Bloch dispersion
diagrams of infinite two-dimensional EBGs. A rigorous cylindrical-
wave approach is used to analyze two-dimensional EBGs with finite
size, excited by a line source. We apply these tools to the analysis
of different emitting devices, and propose solutions to improve their
performances.

1. INTRODUCTION

Electromagnetic crystals [1], also called Electromagnetic Band-Gap
(EBG) materials, show an enormous potential in manipulating the
propagation of electromagnetic waves. Their technology is advancing
rapidly and they are used in a lot of applications, such as waveguides,
filters, antennas, high- and low-Q resonators, reflectors, integrated
circuits, microstrip structures, lens couplers [2–9].

EBGs are often employed to improve the performances of antennas
in the microwave range of frequencies: monopole [10], dipole [11],
[12] and wire antennas [13]; slot [14, 15] and patch antennas [15–18];
bow-tie [19], spiral and curl antennas [20]; parabolic reflectors [21];
arrays [22]. In [23], EBG surfaces for effective polarization diversity of
wireless communications antenna systems had been optimized using a
neural network. In [24], an EBG non-uniform high-impedance surface,
imitating the behavior of a perfect magnetic conductor, had been
designed for a low-profile antenna. Electromagnetic crystals can be
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also employed to reduce mutual coupling between large antenna arrays
[25].

In many cases, EBGs are used as planar reflectors, as substrates,
or as high impedance ground planes: they are able to eliminate the
drawbacks of conducting ground planes, to prevent the propagation
of surface waves, to lower the device profiles, and to increase
radiation efficiency [11, 26, 27]. Otherwise, EBGs can be employed
as superstrates, and their effect is a considerable reduction of the
angular range of the field emitted by the antenna [28–30]. Both an
electromagnetic-crystal substrate and a cover had been simultaneously
used in [31]. Moreover, it had been demonstrated that embedding
sources in EBGs working near their band-gap edges it is possible to
obtain highly directive antennas [32, 33], thanks to the limited angular
propagation allowed within the crystal.

In this work, attention is paid to a class of radiating devices
employing EBGs in accordance to the last abovementioned operating
mechanism, i.e., on linear antennas whose directivity is controlled and
enhanced through the insertion in a dielectric EBG working near a
band-gap edge.

The most commonly used techniques for the analysis and design
of EBGs are the plane-wave expansion method [1], the finite difference
method [34], the finite element method [35], the transfer matrix
method [36], and the Fourier modal method [37]. In this paper, the
plane-wave expansion method is used to obtain the Bloch dispersion
diagrams of infinite two-dimensional EBGs, that are useful to predict
the qualitative behavior of an electromagnetic wave propagating in the
crystal. In practical applications, the EBG containing the embedded
antenna has a finite size and it is excited by an incident field: we model
the whole emitting device by means of a rigorous method, representing
the field scattered by a finite and periodic set of cylinders in terms of
superpositions of cylindrical waves.

The theoretical tools are presented in Section 2. In Section 3
design concepts of highly directive antennas are resumed, numerical
examples are given, and solutions are proposed to improve the
performances of the emitting devices. In Section 4 some conclusions
are drawn.

2. THEORETICAL BACKGROUND

2.1. Electromagnetic Scattering from a 2D-EBG Material
Excited by an Electric Line Source

The geometry of our scattering problem is shown in Fig. 1. A finite
set of N dielectric circular cylinders, with possibly different radii and
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Figure 1. Geometry of the scattering problem.

permittivities, is immersed in a dielectric medium (for the sake of
simplicity, we suppose it to be a vacuum). The involved dielectric
materials are considered to be linear, isotropic, homogeneous, and
lossless. Each cylinder is parallel to the y axis: the structure is assumed
to be infinite along the y direction, therefore the problem is reduced to
a two-dimensional form. We introduce a main reference frame MRF
(O, ξ, ζ), with normalized coordinates ξ = k0x and ζ = k0z, k0 = 2πλ0

being the vacuum wave-number. The electromagnetic excitation is an
electric line source, located in (χc, ηc) in MRF , and parallel to the
axes of the dielectric cylinders. The q-th scatterer has dimensionless
radius αq = k0aq, permittivity εcq = ε0n

2
cq, being ncq the refractive

index, and axis coordinates (χq, ηq) in MRF . Moreover, we introduce
N local reference frames RFq (q = 1, . . . , N) centered on the cylinder
axes: both rectangular (ξq, ζq) and polar (ρq, θq) local coordinates are
considered, with ξq = k0xq = ξ − χq, ζq = k0zq = ζ − ηq, ρq = k0rq.
The time dependence of the field is assumed to be e−iωt, where ω is
the angular frequency, and is omitted throughout the paper.

The solution to the scattering problem is carried out in terms
of V (ξ, ζ), which represents the y-component of the electric field:
V = Ey(ξ, ζ) for the present TM(y) case. Once V (ξ, ζ) is known, it
is possible to derive all the other components of the electromagnetic
field by using Maxwell’s equations.

In order to obtain a rigorous solution for V (ξ, ζ), the total field is
expressed as the superposition of the following three terms, produced
by the interaction between incident field and cylinders:
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• Vi(ξ, ζ): incident field;
• Vs(ξ, ζ): field scattered by the cylinders;
• Vcq(ξ, ζ): field inside the q-th dielectric cylinder.

The incident field Vi can be written as:

Vi (ξ, ζ) = −V0H
(1)
0

(√
(ξ − χc)

2 + (ζ − ηc)
2
)

(1)

where V0 is the incident field amplitude and H
(1)
0 is the first-kind 0-

order Hankel function [38]. In order to facilitate the imposition of
the boundary conditions, it is useful to express Vi as a function of
RFq coordinates. To this aim, making use of the addition theorem of
Hankel functions [39], we find

H
(1)
0 (ρc) =

+∞∑
�=−∞

(−1)�H
(1)
� (ρcq)ei�θcqJ�(ρq)e

−i�θq (2)

where H
(1)
� is the first-kind Hankel function of integer order  .

Therefore, being (−1)�J�(·) = J−�(·), and exchanging  with − , the
incident field becomes

Vi (ξq, ζq) = −V0

+∞∑
�=−∞

CW−�(ξcq, ζcq)J�(ρq)ei�θq (3)

where CW�(ξcq, ζcq) = H
(1)
� (ρcq)ei�θcq is the so-called cylindrical

function of integer order  .
The scattered field Vs can be written as the sum of the fields

scattered by each cylinder, expressed by a superposition of cylindrical
functions with unknown coefficients ch�:

Vs(ξ, ζ) = V0

N∑
t=1

+∞∑
�=−∞

ct�CW �(ξ − χt,ζ − ηt) (4)

Making use of the addition theorem of Hankel functions, we can express
in the reference frame RFq, centered on the q-th cylinder, a cylindrical
wave emitted by the h-th cylinder, as:

H
(1)
� (ρh)ei�θh= ei�θhq

+∞∑
m=−∞

(−1)mH
(1)
�+m(ρhq)eimθhqJm(ρq)e

−imθq (5)
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After some manipulations, we obtain the following expression for the
whole scattered field, in RFq:

Vs(ξq, ζq) = V0

+∞∑
m=−∞

Jm(ρq)eimθt

N∑
h=1

+∞∑
�=−∞

ch�

×
[
CW �−m(ξhq, ζhq)(1 − δhq) +

H
(1)
m (ρq)

Jm(ρq)
δhqδm�

]
(6)

where δ is the Kronecker symbol.
The field Vcq inside the q-th dielectric cylinder is given by

an expansion in terms of first-kind Bessel functions, with unknown
coefficients dqm [40]:

Vcq(ξq, ζq) = V0

+∞∑
m=−∞

ime−imϕtdqmJm(ncqρq)e
imθq (7)

Once the expressions of all the fields have been given, the
boundary conditions on the cylinder surfaces have to be imposed:


Vi(ξq, ζq) + Vs(ξq, ζq)|ρq=αq

= Vcq(ξq, ζq)|ρq=αq

∂

∂ρq

[
Vi(ξq, ζq) + V s(ξq, ζq)

]∣∣∣∣∣
ρq=αq

=
∂Vcq(ξq, ζq)

∂ρq

∣∣∣∣∣
ρq=αq

(8)

where q = 1, . . . , N .
By using the orthogonality property of the exponential functions,

after some manipulations, it is possible to obtain a linear system for
the unknown coefficients ch� and dqm:



N∑
h=1

+∞∑
�=−∞

A
hq(1)
m� ch�−Bq(1)

m =dqmGq(1)
m

N∑
h=1

+∞∑
�=−∞

A
hq(2)
m� ch�−Bq(2)

m =dqmGq(2)
m

(9)

with m = 0,±1,±2, . . ., q = 1, . . . , N , and

Ahq
m� = [CW�−m(ξht, ζht)(1 − δhq)]Tm(αq) + δhqδ�m (10)

Bq
m = Tm(αq)CW−m(ξcq, ζcq) (11)

Gq(1)
m = Jm(ncqαq)/H

(1)
m (αq) (12)

Gq(2)
m = ncqJm

′(ncqαq)/H
(1)
m

′(αq) (13)
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where T
(1)
m (x) = Jm(x)/H(1)

m (x) and T
(2)
m (x) = Jm

′(x)/H(1)
m

′(x).
A way to solve the system (9) is to eliminate the coefficients

dqm, thus obtaining a linear system for the sole ch� coefficients. From
Eqs. (9) it follows

dqm =

N∑
h=1

+∞∑
�=−∞

A
hq(1)
m� ch� −Bq(1)

m

G
q(1)
m

=

N∑
h=1

+∞∑
�=−∞

A
hq(2)
m� ch� −Bq(2)

m

G
q(2)
m

(14)

therefore
N∑

h=1

+∞∑
�=−∞

Dhq
m�ch� = M q

m (15)

where Dhq
m� = G

q(2)
m A

hs(1)
m� − G

q(1)
m A

hq(2)
m� , and M q

m = B
q(1)
m L

q(2)
m −

B
q(2)
m L

q(1)
m .

By knowledge of the ch� and dqm coefficients, the total
electromagnetic field is completely determined in any point of space.

Although no approximations have been introduced in the
theoretical analysis, to obtain numerical results it is necessary to
approximate the series in Eqs. (9) with a finite number of terms.
The choice of a truncation index M ∼= 3n1α, where α is the
maximum dimensionless radius αq (q = 1, . . . , N), usually reveals
an efficient criterion, showing a good compromise between accuracy
and computational heaviness [41]. However, in all the performed
computations we required a convergence on the third significant figure:
to this aim, in some cases we used larger values of M .

2.2. Plane-wave Expansion Method and Bloch Dispersion
Diagrams

The study of infinite electromagnetic crystals properties is often based
on Bloch modes dispersion diagrams, which describe the intrinsic
properties of the periodic structures in the absence of any incident field,
and give information about the possible energy propagation directions.

We computed the dispersion diagrams by using a plane wave
expansion method. In particular, according to the Bloch theorem,
we write the electric field V (x, z) as

V (x, z) = eik0xxeik0zzVp(x, z) (16)

where k0x = k0 cos θ, k0z = k0 sin θ, θ being the generic propagation
angle (see Figure 2(a)), and Vp(x, z) is a periodic function that can be
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expanded in a Fourier series, as follows:

Vp(x, z) =
+∞∑

n=−∞

+∞∑
q=−∞

Vnqe
i 2πnx

dx ei 2πqz
dz (17)

where dx and dz are the periods of the electromagnetic crystal along x
and z directions, respectively.

Also the inverse of the relative permittivity of the EBG, ε−1
r (x, z),

is a periodic function, and it can be expanded in a Fourier series:

ε−1
r (x, z) =

+∞∑
m=−∞

+∞∑
p=−∞

ζmpe
i 2πmx

dx ei 2πpz
dz (18)

From Helmholtz equation ∇2V + εrk
2
0V = 0 it follows

1
εr

(
∂2V

∂x2
+

∂2V

∂z2

)
+ k2

0V = 0 (19)

By substituting Eqs. (16)–(18) in Eq. (19), one obtains:

+∞∑
n=−∞

+∞∑
q=−∞

+∞∑
m=−∞

+∞∑
p=−∞

[(
2πnx
dx

+ k0x

)2

+
(

2πqz
dz

+ k0z

)2
]
×

ζmpe
i 2πmx

dx ei 2πpz
dz Vnqe

i 2πnx
dx ei 2πqz

dz +k2
0

+∞∑
n=−∞

+∞∑
q=−∞

Vnqe
i 2πnx

dx ei 2πqz
dz =0

(20)

Multiplying for e−i 2πfx
dx e−i 2π
z

dz , and integrating on dx and dz, the
following eigenvalue equation is found

+∞∑
n=−∞

+∞∑
q=−∞

Vnqζf−n,�−q

[(
2πnx
dx

+k0x

)2

+
(

2πqz
dz

+k0z

)2
]
+k2

0Vf� =0

(21)
In the classical presentation of Bloch diagrams, the solutions for

the Bloch wave-vector k(ω) are presented on a two-dimensional plot,
where the abscissa represents the edge of the first reduced Brillouin
zone. We give in Figure 2(b) an example of such diagram in the case
of an EBG made of circular-section rods of radius a = 0.23 cm and
refractive index nc = 2.9, lying in a vacuum, arranged on a triangular
lattice with dx = dz = 1.51 cm, sketched in Figure 2(a).

Most of the information about waves propagating in an infinite
EBG can be deduced from a two-dimensional dispersion diagram.
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Figure 2. (a) Sketch of an EBG made of dielectric circular-section
rods arranged on a triangular lattice. (b) Bloch modes dispersion two-
dimensional diagram along the edge of the first reduced Brillouin zone,
for the crystal of (a) when the rods have radius a = 0.23 cm and
refractive index nc = 2.9, the periods of the lattice are dx = dz =
1.51 cm along x and z. (c) Bloch modes dispersion three-dimensional
diagram in the whole Brillouin zone, for the same crystal of (b).

However, a three-dimensional plot in which the Bloch wavevector
covers the whole Brillouin zone, instead of the edge of the first reduced
one, reveals more completely the EBG dispersion relation properties:
an example of such diagram is given in Figure 2(c), for the same
structure as in Figure 2(a). Each band is represented by a curved sheet:
in order to obtain the customary two-dimensional view, one should
intersect the sheets with the vertical walls of a prism whose base is the
first Brillouin zone. The intersection of the sheets with a horizontal
plane corresponding to the operation wavelength, instead, gives a curve
in the (kx, ky) plane, that is a constant-frequency dispersion diagram
that turns out to be useful in the design of directive antennas.
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3. DESIGN OF DIRECTIVE ANTENNAS

A source embedded inside an electromagnetic crystal, working at a
frequency corresponding to a band-gap edge, constitutes an antenna
radiating energy in a very narrow angular range.

Figure 3. Schematic drawings illustrating concepts of propagation
outside an EBG working near a band-gap edge.

An EBG near a band-gap edge may behave like a homogeneous
dielectric material with refractive index n 	 1 (see Figure 3(a)) [42].
The constant-frequency dispersion curve of a vacuum is a circle defined
by k2

x +k2
z = k2

0, the corresponding curve of a material with n 	 1 is a
circle with a smaller radius (see Figure 3(b)). If we want to enforce the
radiated field inside a small angular range centered around the z axis,
the constant-frequency dispersion curve of the EBG should entirely lay
inside the gray region in Figure 3(b): it corresponds to large kz values
and small kx values. This can be obtained working at a frequency
near a band-gap edge, and appropriately expanding the unit cell of the
crystal in the z direction. A detailed explanation can be found in [32].

In Figure 4(b), we report the polar radiated pattern for a finite
EBG structure with 92 circular-section rods of radius a = 0.23 cm and
refractive index nc = 2.9, lying in a vacuum, arranged on a triangular
lattice with periods dx = 1.51 cm and dz = 1.48 cm, excited by a wire



188 Pajewski, Rinaldi, and Schettini

Figure 4. (a) Geometry of a finite EBG with 92 circular-section rods
lying in a vacuum, arranged on a triangular lattice and excited by a
wire source. (b) Polar radiated pattern for the structure of (a) when
a = 0.23 cm, nc = 2.9, dx = 1.51 cm, dz = 1.48 cm; the operating
frequency is f = 10 GHz.

source positioned as shown in Figure 4(a). The operating frequency is
f = 10 GHz: it is inside a gap for the infinite crystal of Figure 2, but
it is on a gap-edge for the finite and expanded crystal now considered.
Because of the symmetry with respect to the x axis, the radiation
occurs for both +z and −z directions, in a narrow angular range. If
only the +z lobe is considered, as if the −z lobe was not present, the
directivity of the device turns out to be D = 19.7 dB, the side lobe level
is SLL = −17.3 dB, and the half power beam width is HPBW = 9.5◦.

In order to avoid the radiation along −z direction, a ground plane
or a mirror could be used. Another possible solution is using an EBG
as a mirror, i.e., placing beside the above described structure a different
EBG, showing a stop-band at the operating frequency. In Figure 5(b)
we report the polar pattern for the same structure as in Figure 4, placed
beside a 57 circular-section rod EBG with a = 0.23 cm, nc = 2.9,
and with periods dx = 1.51 cm and dz1 = 1.31 cm, along x and z,
respectively: the whole device is sketched in Figure 5(a). Only the
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+z radiation lobe is now present; it is narrower than the two lobes of
Figure 4, in fact it is now found that D = 21.7 dB, SLL = −17.3 dB,
and HPBW = 8.4◦.

Figure 5. (a) Geometry of the same EBG as in Figure 4 placed beside
a 57 circular-section rods EBG with different z-period dz1. (b) Polar
radiated pattern for the structure of (a) when dz1 = 1.31 cm.

In order to improve the antenna performances, it appears that the
lateral size of the EBG has to be widened [19]. The structure sketched
in Figure 6(a) is similar to the one considered in Figure 5, but now 273
cylinder are present. Being the structure larger along x, the field shows
more significant transverse variations inside the EBG, consequently a
radiated pattern with higher lateral lobes is obtained. However, if
the periods along z are slightly shortened in order to get closer to
the band-gap edge (as an alternative, the operating frequency could
be slightly reduced), the corresponding constant-frequency dispersion
diagram becomes a smaller closed curve and the allowed kx of the
Bloch wave vector become smaller too: therefore, the spatial variations
of the field along x become again smooth. The following values for
the antenna parameters are found, when dz = 1.47 and dz1 = 1.30:
D = 22.5 dB, SLL = −25 dB, and HPBW = 6.6◦.

In the design of this kind of antennas, the reduction of the device
size is an important goal. To this aim, we considered alternative
configurations. In the following, we present preliminary results
concerning a triangular set of 49 circular-section rods of radius a =
0.26 cm and refractive index nc = 3, lying in a vacuum, arranged on
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Figure 6. (a) Geometry of an EBG similar to the one considered in
Figure 5 but widened along x direction: 273 cylinder are now present.
(b) Polar radiated pattern for the structure of (a) when dz = 1.47 cm
and dz1 = 1.30 cm.

a square lattice with dx = dz = 1.48 cm, and excited by a wire source
positioned as shown in Figure 7(a). The operating frequency is f =
10 GHz, and it is on a gap-edge for the square-lattice electromagnetic
crystal now considered. The polar radiated pattern is reported in
Figure 7(b), it is narrow along +z direction but it is large and indented
along −z direction.

Placing next to the structure of Figure 7 a triangular set of
36 circular-section rods of radius a = 0.26 cm and refractive index
nc = 3, arranged on a rectangular lattice with periods dx = 1.48 cm
and dz1 = 1.31 cm, as shown in Figure 8(a), the radiation along −z
direction can be avoided. The corresponding polar pattern is reported
in Figure 8(b) and the following antenna parameters are calculated:
D = 18 dB, SLL = −16 dB, and HPBW = 9.3◦.

In order to improve the antenna performances, the lateral size of
the EBG has to be widened and the periods along z slightly shortened,
as previously discussed. In Figure 9 the upper triangular EBG in which
the source is embedded has dx = dz = 1.45 cm (in order to maintain
the lattice squared, even the period along x has been shortened), the
lower EBG has dx = 1.45 cm and dz1 = 1.29 cm. Moreover, for all the
cylinders a = 0.26 cm and nc = 3. The total number of cylinders is
now 157. For this device it is found that D = 21 dB, SLL = −18 dB,
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Figure 7. (a) Geometry of a finite triangular EBG with 49 circular-
section rods lying in a vacuum, arranged on a square lattice and excited
by a wire source. (b) Polar radiated pattern for the structure of (a)
when a = 0.26 cm, nc = 3, dx = dz = 1.48 cm; the operating frequency
is f = 10 GHz.

Figure 8. (a) Geometry of the same EBG as in Figure 7 placed
beside a 36 circular-section rods EBG with different period dz1. (b)
Polar radiated pattern for the structure of (a) when dz1 = 1.31 cm.
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Figure 9. (a) Geometry of an EBG similar to the one considered
in Figure 8 but widened along x direction: 157 cylinder are now
present. (b) Polar radiated pattern for the structure of (a) when
dx = dz = 1.45 cm and dz1 = 1.29 cm.

and HPBW = 8.5◦. This results can be compared with those of the
antenna of Figure 6: the performances of the triangular antenna are
good, and the adoption of a triangular configuration allows to half the
number of cylinders.

4. CONCLUSIONS

In this paper, we studied a class of radiating devices with enhanced
directivity. The enhancement mechanism is based on the insertion
of the source in a dielectric EBG working near a band-gap edge.
We implemented the plane-wave expansion method to obtain the
Bloch dispersion diagrams of infinite two-dimensional EBGs. We have
studied the directive spectral properties of the electromagnetic crystal.
A cylindrical-wave approach was developed to analyze two-dimensional
EBGs with finite size, excited by a line source.

We presented numerical results, concerning different emitting
devices, and proposed solutions to improve their performances. A
natural direction for future work seems us to be an accurate
optimization of the EBG geometrical parameters and of the source
position, in order to improve the performances of the antennas
presented in this paper, or to find better geometries.
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