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Abstract—In this paper, three analytic closed form solutions are
introduced for arbitrary Nonuniform Transmission Lines (NTLs). The
differential equations of NTLs are written in three suitable matrix
equation forms, first. Then the matrix equations are solved to obtain
the chain parameter matrix of NTLs. The obtained solutions are
applicable to arbitrary lossy and dispersive NTLs. The validation of
the proposed solutions is verified using some comprehensive examples.

1. INTRODUCTION

Nonuniform Transmission Lines (NTLs) are widely used in microwave
circuits [1–5]. The differential equations describing NTLs have non-
constant coefficients, so except for a few special cases, no analytical
solution exists for them. There are some methods to analyze NTLs such
as cascading many short sections [6, 7], finite difference [8], Taylor’s
series expansion [9], Fourier series expansion [10], the equivalent
sources method [11] and the method of Moments [12]. These methods
are numerical and do not yield an analytic closed form solutions. Only
in [13], a closed form solution has been yielded, whose accuracy is not so
acceptable at all frequencies. In this paper, three analytic closed form
solutions are given, which have acceptable accuracy for most of NTLs
at all frequencies. First, the differential equations of NTLs are written
in three suitable matrix equation forms. Then the matrix equations are
solved to obtain the chain parameter matrix of NTLs. The obtained
solutions are applicable to arbitrary NTLs. The validation of the
proposed solutions is studied using some comprehensive examples.
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Figure 1. A typical NTL of length d terminated by arbitrary loads.

2. THE EQUATIONS OF NTLS

The equations related to NTLs are reviewed in this section. Figure 1
shows a typical NTL of length d with arbitrary terminal loads ZS

and ZL. The differential equations describing NTLs in the frequency
domain are given by

dV (z)
dz

= −Z(z)I(z) (1)

dI(z)
dz

= −Y (z)V (z) (2)

where

Z(z) = R(z) + jωL(z) (3)
Y (z) = G(z) + jωC(z) (4)

In (3)–(4), R, L, G and C are the distributed primary parameters
of NTLs. The secondary parameters of NTLs (the characteristic
impedance and the propagation coefficient) will be as follows

Zc(z) =

√
Z(z)
Y (z)

(5)

γ(z) =
√

Z(z)Y (z) (6)

Furthermore, the terminal conditions for loaded NTLs are as follows

V (0) + ZSI(0) = VS (7)
V (d) − ZLI(d) = 0 (8)

Finally, the voltages and currents of terminals can be related to each
other by the chain parameter or ABCD matrices as follows.[

V (d)
I(d)

]
= Φ

[
V (0)
I(0)

]
=

[
A B
C D

]−1 [
V (0)
I(0)

]
(9)
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3. SOLVING MATRIX DIFFERENTIAL EQUATION

In this section an approach is proposed to solve a particular matrix
differential equation. This approach is identical to that is usually used
to solve scalar differential equations. Consider the following matrix
differential equation.

d

dz
X(z) = −A(z)X(z) (10)

where

X(z) =
[
X1(z) X3(z)
X2(z) X4(z)

]
(11)

and

A(z) =
[
A11(z) A12(z)
A21(z) A22(z)

]
(12)

are the unknown and known matrices, respectively. From the matrix
algebra and using (10), we can write the following

X−0.5(z)(dX(z))X−0.5(z) = d (ln(X(z)))
= −

(
X−0.5(z)A(z)X0.5(z)

)
dz ∼= −A(z)dz (13)

Again, from the matrix algebra and using (13), we can write the
following

ln(X(z)) − ln(X(0)) = −
z∫

0

A(z′)dz′ (14)

Therefore, one can determine the following solution for the unknown
matrix in (10) from (14).

X(z)∼=X0.5(0) exp


−

z∫
0

A(z′)dz′


X0.5(0)∼=exp


−

z∫
0

A(z′)dz′


X(0)

(15)

The approximations used in (13) and (15) are dependent to the matrix
A(z) and its integral.

4. ANALYSIS OF NTLS

In this section three closed form solutions are obtained for NTLs
utilizing the approach proposed in the previous section.
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4.1. Solution No. 1

The set of differential Equations (1)–(2), can be written similar to the
matrix Equation (10), assuming

X(z) =
[
V (z) V (z)
I(z) I(z)

]
(16)

and

A(z) =
[

0 Z(z)
Y (z) 0

]
(17)

From (15) and (9), the following closed form solution (as Solution 1)
is obtained as the chain parameter matrix of NTLs.

Φ = exp


−

d∫
0

A(z′)dz′


 (18)

4.2. Solution No. 2

One may transform the set of differential Equations (1)–(2) to the
following ones

dV̂ (z)
dz

=
1

2Y (z)
dY (z)

dz
V̂ (z) − γ(z)Î(z) (19)

dÎ(z)
dz

=
1

2Z(z)
dZ(z)

dz
Î(z) − γ(z)V̂ (z) (20)

where

V̂ (z) =
√

Y (z)V (z) (21)

Î(z) =
√

Z(z)I(z) (22)

are defined as the normalized voltage and current, respectively. The
set of differential Equations (19)–(20), can be written similar to the
matrix Equation (10), assuming

X(z) =
[
V̂ (z) V̂ (z)
Î(z) Î(z)

]
(23)

and

A(z) =

[ −1
2Y (z)

dY (z)
dz γ(z)

γ(z) −1
2Z(z)

dZ(z)
dz

]
(24)
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From (15), (9) and (21)–(22), the following closed form solution (as
Solution 2) is obtained as the chain parameter matrix of NTLs.

Φ =
[
1/

√
Y (d) 0
0 1/

√
Z(d)

]
exp


−

d∫
0

A(z′)dz′


 [√

Y (0) 0
0

√
Z(0)

]

(25)

4.3. Solution No. 3

Also, one may transform the set of differential Equations (1)–(2) to
the following ones

dV (z)
dz

= − 1
Zc(z)

dZc(z)
dz

V (z) − γ(z)I(z) (26)

dI(z)
dz

= −γ(z)V (z) (27)

where

V (z) =
1

Zc(z)
V (z) (28)

is defined as the normalized voltage. The set of differential Equa-
tions (26)–(27), can be written similar to the matrix Equation (10),
assuming

X(z) =
[
V (z) V (z)
I(z) I(z)

]
(29)

and

A(z) =

[
1

Zc(z)
dZc(z)

dz γ(z)
γ(z) 0

]
=

[
1

2Z(z)
dZ(z)

dz − 1
2Y (z)

dY (z)
dz γ(z)

γ(z) 0

]
(30)

From (15), (9) and (28), the following closed form solution (as Solution
3) is obtained as the chain parameter matrix of NTLs.

Φ =
[
Zc(d) 0

0 1

]
exp


−

d∫
0

A(z′)dz′


 [

1/Zc(0) 0
0 1

]
(31)

The chain parameter matrix corresponding to the arbitrary chosen
point z with respect to the point z=0, can be obtained using (18), (25)
and (31) but replacing z instead of d. Therefore, one can obtain the
voltage and current at any point of NTLs using the chain parameter
matrix of terminals and the boundary conditions (7)–(8).
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5. EXAMPLES AND DISCUSSION

In this section, three obtained closed form solutions are validated using
three examples.
Example 1: Consider a lossless and exponential NTL with the
following distributed primary parameters.

L(z) = L0 exp(kz/d) (32)
C(z) = C0 exp(−kz/d) (33)
R(z) = G(z) = 0 (34)

This type of transmission line will have the following secondary
parameters.

Zc(z) =
√

L0/C0 exp(kz/d) (35)

γ(z) = jβ(z) = jω
√

L0C0 (36)

Therefore, the matrix A(z) will be as follows for three solutions,
respectively.

A1(z) =
[

0 jωL0 exp(kz/d)
jωC0 exp(−kz/d) 0

]
(37)

A2(z) =
[

k
2d jω

√
L0C0

jω
√

L0C0 − k
2d

]
(38)

A3(z) =
[

k/d jω
√

L0C0

jω
√

L0C0 0

]
(39)

Assume that d = 20 cm, Zc(0) =
√

L0/C0 = 50 Ω and β = ω
√

L0C0 =
ω/c, in which c is the velocity of the light. Figure 2, compare the
parameter A versus frequency assuming k = 1, obtained from three
introduced solutions with the exact one [14]. One sees that the
accuracy of solution 1 is not acceptable unless at very low frequencies.
However, the accuracies of solutions 2 and 3 are very excellent at
all frequencies. Figures 3–6, compare the ABCD parameters versus
frequency assuming k = 1 and 10, obtained from the solutions 2 and
3 with the exact one. One sees that the accuracies of solutions 2 and
3 are very excellent at all frequencies. Indeed, the solutions 2 and 3
have been given exact results.
Example 2: Consider a lossless and linear NTL with the following
distributed primary parameters.

L(z) = L0 (1 + k(z/d)) (40)

C(z) =
C0

1 + k(z/d)
(41)
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Figure 2. The parameter A for the lossless exponential NTL with
k = 1.

Figure 3. The parameter A for the lossless exponential NTL.
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Figure 4. The parameter B for the lossless exponential NTL.

Figure 5. The parameter C for the lossless exponential NTL.



Progress In Electromagnetics Research B, Vol. 2, 2008 251

Figure 6. The parameter D for the lossless exponential NTL.

R(z) = G(z) = 0 (42)

This type of transmission line will have the following secondary
parameters.

Zc(z) =
√

L0/C0 (1 + k(z/d)) (43)

γ(z) = jβ(z) = jω
√

L0C0 (44)

Therefore, the matrix A(z) will be as follows for three solutions,
respectively.

A1(z) =
[

0 jωL0(1 + kz/d)
jωC0/(1 + kz/d) 0

]
(45)

A2(z) =

[
k/(2d)
1+kz/d jω

√
L0C0

jω
√

L0C0 − k/(2d)
1+kz/d

]
(46)

A3(z) =

[
k/d

1+kz/d jω
√

L0C0

jω
√

L0C0 0

]
(47)

Assume that d=20 cm, Zc(0) =
√

L0/C0 = 50 Ω and β = ω
√

L0C0 =
ω/c. Figure 7, compare the parameter A versus frequency assuming
k = 1, obtained from three introduced solutions with the exact one [7].
Again, one sees that the accuracy of solution 1 is not acceptable unless
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Figure 7. The parameter A for the lossless linear NTL with k = 1.

at very low frequencies. However, the accuracies of solutions 2 and
3 are excellent at all frequencies. Figures 8–11, compare the ABCD
parameters versus frequency assuming k = 1 and 10, obtained from
the solutions 2 and 3 with the exact one. One sees that the accuracies
of solutions 2 and 3 are good at all frequencies and increases as the k
decreases.
Example 3: Consider a lossy and dispersive linear NTL with the
following distributed primary parameters.

L(z) = L0 (1 + k(z/d)) (48)
C(z) = C0 (1 + k(z/d)) (49)
R(z) = R0 (1 + k(z/d)) (50)
G(z) = G0 (1 + k(z/d)) (51)

This type of transmission line will have the following secondary
parameters.

Zc(z) =
√

(R0 + jωL0)/(G0 + jωC0) (52)

γ(z) = γ0(1 + kz/d) =
√

(R0 + jωL0)(G0 + jωC0)(1 + kz/d) (53)

Therefore, the matrix A(z) will be as follows for three solutions,
respectively.

A1(z) =
[

0 (R0 + jωL0)(1 + kz/d)
(G0 + jωC0)(1 + kz/d) 0

]
(54)



Progress In Electromagnetics Research B, Vol. 2, 2008 253

Figure 8. The parameter A for the lossless linear NTL.

Figure 9. The parameter B for the lossless linear NTL.



254 Khalaj-Amirhosseini

Figure 10. The parameter C for the lossless linear NTL.

Figure 11. The parameter D for the lossless linear NTL.
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Figure 12. The parameter A for the lossy linear NTL with k = 5.

A2(z) =

[
− k/(2d)

1+kz/d γ0(1 + kz/d)

γ0(1 + kz/d) − k/(2d)
1+kz/d

]
(55)

A3(z) =
[

0 γ0(1 + kz/d)
γ0(1 + kz/d) 0

]
(56)

Assume that d = 20 cm,
√

L0/C0 = 50 Ω,
√

L0C0 = 1/c,
R0=1.0472 Ω/m and G0 = 4.1888∗10−4 1/Ωm. Figures 12–15, compare
the ABCD parameters versus frequency assuming k=5, obtained from
three solutions 1, 2 and 3 with the exact one [7]. One sees that the
accuracies of all three solutions are very excellent at all frequencies.
Indeed, the solutions 1, 2 and 3 have been given exact results.

It is worth to mention that the relation AD − BC = 1 has been
satisfied by all three solutions in the above examples. According to the
above examples, one may conclude the following results:

1. The solutions 1, 2 and 3 give exact results at all frequencies for
arbitrary NTLs, whose characteristic impedance is constant along
their length.

2. The accuracies of solutions 1, 2 and 3 are excellent at low
frequencies for arbitrary NTLs.

3. The accuracies of solutions 2 and 3 are the same and are acceptable
at all frequencies for arbitrary NTLs.
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Figure 13. The parameter B for the lossy linear NTL with k = 5.

Figure 14. The parameter C for the lossy linear NTL with k = 5.
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Figure 15. The parameter D for the lossly linear NTL with k = 5.

4. The accuracies of solutions 1, 2 and 3 are increased as the
variations of the primary parameters are decreased.

6. CONCLUSION

Three analytic closed form solutions were introduced for arbitrary
Nonuniform Transmission Lines (NTLs). The differential equations
of NTLs are written in three suitable matrix equation forms, first.
Then the matrix equations are solved to obtain the chain parameter
matrix of NTLs. The validation of the proposed solutions was verified
using some comprehensive examples. It was concluded that all three
solutions give exact results at all frequencies for arbitrary NTLs, whose
characteristic impedance is constant along their length. Also, the
accuracies of all three solutions are excellent at low frequencies for
arbitrary NTLs. Moreover, the accuracies of all three solutions are
increased as the variations of the primary parameters are decreased.
Also, the accuracies of two solutions are the same and are acceptable
at all frequencies for arbitrary NTLs.
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