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Abstract—Discrete complex image method is introduced to get a
closed-form dyadic Green’s function by a sum of spherical waves.
However, the simulation result by the traditional discrete complex
image method is only valid in near-field for several wavelengths. In this
paper, we analyze the form of spectral domain dyadic Green’s function
in the whole kρ plane and the variety of valid range of simulation
results by different sampling paths in two-level discrete complex image
method. Consequently, for dyadic Green’s function, surface wave pole
contribution both in spectral domain and spatial domain is clarified.
We introduce the automatic incorporation of surface wave poles in
discrete complex image method without extracting surface wave poles.
The contribution of surface wave poles in spectral domain and spatial
domain dyadic Green’s function is further confirmed in the new
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method. Besides, this method can represent dyadic Green’s function
by spherical waves in the layer where the source and field points
are. So it satisfies the splitting requirement and consequently reduces
the computational complexity dramatically especially for objects with
large scale in ẑ direction.

1. INTRODUCTION

One of the most widely studied topics in applied electromagnetics
is that of wave interaction with planarly layered media model. It
can find various applications in geophysics exploring [1], unexploded
objects characterizing, and microwave integrated circuit analyzing,
etc. This structure can be efficiently and rigorously analyzed by the
method of moments (MoM) [2–4] and fast algorithms based on MoM,
such as the conjugate gradient fast Fourier transform method [5], the
adaptive integral method [6], the fast multipole method [7]. Either
for the conventional MoM or fast algorithms, dyadic Green’s function
for layered media should be computed. However, dyadic Green’s
function is expressed in an infinite integral with an oscillatory and
slowly decaying kernel, and the evaluation of dyadic Green’s function
is quite time consuming.

The discrete complex image method [9–18, 28] is an efficient and
widely used method for rapidly evaluating spatial domain Green’s
function [28]. Essentially, the basic idea of discrete complex image
method is to convert the spectral domain dyadic Green’s function to a
closed form spatial domain dyadic Green’s function by approximating
method and Sommerfeld identity. The unparalleled advantage of
discrete complex image method is that it can represent spatial dyadic
Green’s function in an analytical expression.

However, there exists limitation of traditional discrete complex
image method, since the simulation result by discrete complex
image method is only valid in near-field for several wavelengths.
Usually, this limitation is attributed to the absence of surface wave
modes in conventional discrete complex image method. In previous
investigations [19], surface wave poles were specially extracted before
applying discrete complex image method, and the surface wave
contribution was incorporated by residuals theory. Unfortunately,
the extraction of surface wave poles in spectral domain Green’s
function is quite a difficult task, and it brings up extra computational
load. Meanwhile, another remedy, the two-level discrete complex
image method [11] was proposed. The two-level discrete complex
image method employed a dual-sampling-rate scheme to balance
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approximation accuracy and complexity. It can yield larger valid range
without extracting the quasi-static and surface wave contributions.
But the valid range of two-level discrete complex image method is
still relative small for electrically large problems.

Recently, Yuan [17] proposed an improved method to make the
simulation results accurate in medium- and far-field, by deforming the
sampling path in discrete complex image method. But it can only
represent dyadic Green’s function by spherical waves in free space.
Consequently, the vertical coordinate z and z′ can not be extracted and
numerous discrete complex image method approximations are required,
especially for objects with large scale in ẑ direction [20]. In this paper,
we contrive a novel deformed sampling path for discrete complex image
method, which not only can get accurate simulation results in medium-
and far-field but also ensures the extraction of z and z′.

Moreover, and most importantly, we make clear the contribution
of surface wave in spectral domain dyadic Green’s function. Based on
this finding, we can contrive any sampling path that runs closely by
the singular points. In this way, the fast variations around surface
wave poles can be sampled in approximating functions. Consequently,
the surface wave poles contribution can be automatically incorporated
in spatial domain dyadic Green’s function with closed form. The
clarification of surface wave poles character in spectral domain dyadic
Green’s function provides rules for choosing sampling path of discrete
complex image method.

The procedure of the two-level discrete complex image method
is described and discussions associated with this approach are
demonstrated on some examples by using the this method in Section 2.
And a new sampling path which can automatically incorporate the
contribution of surface wave poles is shown in Section 3. Then some
numerical examples are included in Section 4. Finally, Section 5
provides conclusion.

2. TWO-LEVEL DISCRETE COMPLEX IMAGE
METHOD AND DISCUSSIONS

For the sake of illustration, consider a general planarly layered
media as shown in Fig. 1, where the source is a horizontal electric
dipole (HED). N parallel layers have different heights, permittivities,
conductivities and permeabilities, which are represented as di, εi,
σi and µi (i = 1, 2 . . . N), respectively. And effective permittivity is
defined as ε̃ = ε′ (1 − j tan δ). In this paper, we focus on the situation
when the source and field points are in the same layer.

Dyadic Green’s function describes the relationship between
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Figure 1. Typical layered media with a HED in layer i.

current source and electric field in given media background. Suppose
only electric currents are present, electric field generated by current
source and boundary can be formulated in the mixed-potential integral
equation (MPIE) as follows [23]:

E = −jωµ0

〈
ḠA;J

〉
+

1
jωε0

∇
(〈
KΦ;∇′ · J

〉
+

〈
CΦẑ;J

〉)
(1)

where J and E are electric source and field respectively. Moreover,
ḠA is the vector potential dyadic Green’s function. KΦ is the scalar
potential kernel and CΦ is the correction factor associated with the
longitudinal electric currents. The notation 〈 ; 〉 denotes integrals of
products of two functions separated by the comma over the source
region where J exists.

To get the induced current J , dyadic Green’s function should be
evaluated beforehand. A simple and effective way to get a dyadic
Green’s function for planarly layered media is the spectral domain
transmission line method [23], in which each layer is dealt with as
a component in a transmission line. The spatial domain Green’s
functions may be obtained by employing a one-dimensional Hankel
transformation of the corresponding spectral domain Green’s functions
as

Ḡ(r) =
1
4π

∫

SIP

dkρk
n+1
ρ H(2)

n (kρρ) ˜̄G(kρ), n = 0, 1 (2)

where SIP stands for Sommerfeld integral path, H
(2)
n (kρρ) is the

nth-order Hankel function of the second type, and Ḡ(r) and ˜̄G(kρ)
are the spatial domain and spectral domain dyadic Green’s function,
respectively.

Since the integrant of Sommerfeld integral in (2) is oscillatory and
slowly decaying, it is time-consuming to evaluate spatial dyadic Green’s
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function by numerical integration. Discrete complex image method is
a prominent and widely used method for rapidly evaluating of spatial
domain dyadic Green’s function.

In order to illustrate the limitation of conventional two-level
discrete complex image method and its improvement proposed in this
paper, a sample of spectral domain dyadic Green’s function is given.
We consider G̃xx

Aii of a horizontal electric dipole (HED) [10].

G̃xx
Aii =

µi

2jkzi

{
e−jkzi|z−z′| + R̃TE

i,i+1M
TE
i

×
[
ejkzi(z+z′−2zi+1) + R̃TE

i,i−1e
jkzi(z−z′−2di)

]

+R̃TE
i,i−1M

TE
i

[
e−jkzi(z+z′−2zi) − R̃TE

i,i+1e
−jkzi(z−z′+2di)

] }
(3)

where general reflection coefficients R̃TE
i,i−1, R̃

TM
i,i+1 and MTE

i are defined
in [10].

For the configuration given in Fig. 1, there are two branch-point
singularities in spectral domain dyadic Green’s function. The branch
points are related with the outermost semi-infinite half space. Besides,
there are surface wave pole singularities between the minimum and
the maximum wavenumbers of the layers. Furthermore, the spectral
domain dyadic Green’s function is even function of kρ, so the poles
always come in pairs. For lossless dielectrics, singular poles lie on
the real kρ axis. For lossy dielectrics, they migrate into the fourth
quadrants of the kρ plane. The number of surface wave poles is
dependent on the electrical thicknesses and the dielectric constants
of layers involved [14].

The basic idea of discrete complex image method is to approximate
dyadic Green’s function with a sum of spherical wave functions with
closed form. In discrete complex image method, the spectral domain
dyadic Green’s function is firstly expressed as a sum of complex
exponential series via Prony approximation [21] or the generalized
pencil-of-function approximation method [22].

G̃(kρ) ∼=
1

2jkzi

N∑
m=1

ame
−bmkzi (4)

Then the spatial domain dyadic Green’s function G̃xx
Aii can be

represented as a sum of spherical waves by applying the Sommerfeld
identity as shown in (5).

e−jkr

r
=

∫
SIP

dkρkρH
2
0 (kρρ)

e−jkz |z|

2jkz
(5)
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For Green’s functions that have cosφ or sinφ dependency can be
represented as a sum of spherical waves by applying the derivative of
the Sommerfeld identity (5), which is

(1 + jkr)
ρe−jkr

r3
=

∫
SIP

dkρk
2
ρH

2
1 (kρρ)

e−jkz |z|

2jkz
(6)

Before applying discrete complex image method, the surface wave
poles should be extracted to get wider valid range of simulation
results. Later a two-level discrete complex image method without
the extraction of surface wave poles was proposed to reduce the
approximation complexity and to extend the valid range. In the two-
level discrete complex image method [11], a dual sampling-rate scheme
is adopted and the sampling path is deformed as follows:

Cap1 : kzi = −jki[Tcut2 + t] 0 ≤ t ≤ Tcut1, (7)

Cap2 : kzi = ki

[
−jt+

(
1 − t

Tcut2

)]
0 ≤ t ≤ Tcut2 (8)

Where Cap1 and Cap2 denote the two sampling path, ki and kzi

are the wavenumber and the vertical wavenumber for the ith layer
respectively. Tcut1 and Tcut2 are the constants controlling the form of
deformed path.

Samples of spectral domain dyadic Green’s functions are evaluated
along the sampling path and then the sampled spectral domain dyadic
Green’s function can be approximated by complex exponentials. At
last, the spatial domain dyadic Green’s function can be represented in
series of spherical waves via Sommerfeld identity in (5).

G(r, r′) =
1
4π


 N1∑

n

a1n
e−jkir1n

r1n
+

N2∑
n

a2n
e−jkir2n

r2n


 (9)

Usually, the simulation results of two-level discrete complex image
method are accurate for the distance as far as 3 ∼ 4 wavelengths and
they fall into errors beyond this range. But what is the cause of the
inaccuracy and how to extend the valid range? It is instructive to
investigate the relationship between sampling path and valid range of
simulation results. In other words, it is important to make clear which
factors affect the valid range and how they are incorporated.

To answer the aforementioned questions, a five-layer geometry
with infinite conducting base is considered, as shown in Fig. 2. The
structure and electromagnetic parameters are given in Fig. 2, and the
frequency is 30 GHz.
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Figure 2. Geometry of a structure with five layers and a perfectly
conducting ground plane.

We consider Gxx
A22 of dyadic Green’s function, in which both source

point and field point reside at 0.4 mm, in the second layer. In utilizing
two-level discrete complex image method, Tcut1 and Tcut2 should be
chosen according to the layer parameters. For comparison, we first
fix Tcut1 = 200, and then appoint different values for Tcut2 to form
different sampling path Cap2 for different approximations. Here, we
choose Tcut2 = 2, 5, 8, respectively.

Figure 3 shows the value distribution of G̃xx
A22 (kρ, z, z

′) in kρ plane.
It indicates large variations due to the singular point. Fig. 4 depicts
different sampling paths for different value of Tcut2. The singular points

Figure 3. The value distribution of spectral domain G̃xx
A22 (kρ, z, z

′)
in kρ plane.
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Figure 4. Comparison of different sampling paths for Tcut2.

locate at the real axis of kρ plane, and the sampling paths travel along
the real kρ axis as the Sommerfeld integral path does. However, the
most importantly, sampling paths shown in Fig. 4 try to avoid coming
close to the singular points, and the larger is Tcut2, the farther is the
sampling path from the singular points. Fig. 5 shows simulation results
for different sampling paths according to Tcut2. For smaller value of
Tcut2, the simulation result has larger valid range. As shown in Fig. 5,
sampling scheme for Tcut2 = 2 yields the largest valid range.

Based on the analysis of Fig. 3, Fig. 4 and Fig. 5, we can conclude
that if the sampling path is closer to singular points, the valid range
is larger. Since the singular points in spectral domain contribute as
surface wave modes in spatial domain, and the surface wave dominates
in far region of spatial domain dyadic Green’s function. In this way, we
can go further to conclude that the sampling path which is moved closer
to singular points can catch the more variations of the singular points,
and consequently can approximate the surface wave modes efficiently.

It is instructive to make clear that the contribution of surface wave
poles can be incorporated in simulation result by choosing a sampling
path which is close to singular points.
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Figure 5. Comparison of results of Gxx
A22 for different Tcut2.

3. THE NEW SAMPLING PATH

It is found that if the sampling path is closer to singular points, the
more variations of spectral domain dyadic Green’s function can be
extracted. Consequently the larger valid range can be obtained in
spatial domain dyadic Green’s function. Guided by this new finding,
we contrive to design a new sampling path to get large valid range for
discrete complex image method.

The key of extending valid range lies in incorporating the
contribution of singular points. As we have mentioned beforehand,
there are some singular points in the geometry, that is, in the range
of kmin (= k0) < kρ < kmax

(
= k0

√
ε̃max

)
at the real kρ axis for lossless

dielectrics. So the singulary points on the real axis of kzi plane
are between

[
0, k0

√
ε̃i − 1

)
, and on the imaginary axis are between(

−jk0
√
ε̃max − ε̃i, 0

]
. Moreover, there is no conceptual difficulty in

using the same equations for treating the lossy substrate case. The
path is the same in the kzi plane. But the path in kρ plane may be a
little difficult when αβ< ε′i tan δ/2. As in that case, the point ks moves
in the four quadrant of kρ plane.

To extract the fast variations of singular points, we propose a
deformed sampling path which passes across singular points in vicinity
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Figure 6. The new deformed sampling path in kzi domain.

Figure 7. The new deformed sampling path in kρ domain.

as shown in Fig. 6.

Cap1 : kzi = ki(1 + (s− 1)t), 0 ≤ t ≤ 1 (10)

Cap2 : kzi = ki

(
s− j

t√
ε̃i

)
, 0 ≤ t ≤ T (11)

where s = (α− jβ)/
√
ε̃i, (0 < α < 1, 0 ≤ β < 1) is the inflexion of

sampling path.
In Fig. 6, α controls the distance between path Cap2 and imaginary

axis of kzi plane, and β controls the distance between path Cap1 and
real axis of kzi plane.
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Because the path of integration is the legitimately deformed path
from Sommerfeld integral path and over which the integrands are
single-valued functions, the deformed path will not cross the branch
point [14]. If the source and field points are in the free space layer, the
new sampling path will be equal to the direct discrete complex image
method by choosing β = 0.

The recipe of the new sampling path is as follows.

1) Approximate the spectral kernel on path Cap2 as

G̃ (kρ)
∣∣∣
Cap2

≈
M∑
i=1

aie
−jbikzi

∣∣∣∣∣
Cap2

(12)

To include enough information of all singular points on or near
the imaginary axis, T should satisfy T >

√
ε̃max − ε̃i. M can be

over 100 for accurate requirements for the spatial-domain Green’s
function. The sampling path is closer to the singular points for
smaller α.

2) Approximate the spectral kernel on path Cap1 as

G̃ (kρ)
∣∣∣
Cap1

−
M∑
i=1

aie
−jbikzi

∣∣∣∣∣
Cap2

≈
N∑

i=1

a′ie
−jb′ikzi

∣∣∣∣∣
Cap1

(13)

To include enough information of all singular points on or near
the real axis, N can be over 100 for accurate requirements for the
spatial-domain Green’s function. The sampling path is closer to
the singular points for smaller β.

3) The spatial-domain GF can be expressed as

G
(
ρ, z| z′

)
=

M∑
i=1

ai
e−jkiri

ri
+

N∑
i=1

a′i
e−jkir

′
i

r′i
(14)

where
ri =

√
ρ2 + (z + z′ − jbi)2 (15)

A threshold tol can be set in the matrix pencil method [23] to
control the accuracy. We set tol = 10−8 both on Cap1 and Cap2.

The improved path of kzi domain can represent dyadic Green’s
function by spherical waves in the layer where the source and
field points are, and it exactly satisfies the requirement of splitting
scheme [20]. In that case, the vertical coordinate z and z′ can be
extracted and only a few coefficients R̃TE

i,i±1M
TE
i and R̃TE

i,i−1R̃
TE
i,i+1M

TE
i
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need to be handled by discrete complex image method. Thus the novel
deformed path reduces the computational complexity dramatically
especially with large scale in the vertical direction ẑ.

Although the similar idea has been proposed by the direct discrete
complex image method [17], it can only represent dyadic Green’s
function by spherical waves in free space, so it doesn’t meet the
splitting requirement if the source and field points are not in the free-
space layer. The vertical coordinate z and z′ can’t be extracted and
numerous discrete complex image method approximations are required,
especially for objects with large scale in ẑ direction. Besides, the
direct discrete complex image method doesn’t give the pole distribution
analysis.

4. NUMERICAL RESULTS

4.1. Lossless Case

To demonstrate the influence of α and β on the spatial-domain dyadic
Green’s function, we use the microstrip problem as used in [25, Fig. 2].
z = z′ = 0, and the frequency is 4.075 GHz. The first layer is the
dielectric layer, and the second layer is the air region. The new path
represents dyadic Green’s function by spherical waves in the first layer.

The value of α, β
(
s = (α− jβ)/

√
εi

)
, the number M of singular

values, how far along the horizontal direction ρmax can be reached
accurately for the spatial-domain Green’s function, and the CPU times
in a Intel(R) Xeon (TM) MP 3.16 GHz are listed in Table 1. λ0

in Table 1 is the wave length in the free space. The first line is
the situation of the direct discrete complex image method in [17] (in
this example, γ = 0.2, T0 = 8.39). The other lines are the results
of the new sampling path on the Cap1 and Cap2 in kz1 plane. The
horizontal direction ρmax in Cap2 is almost same with the change of α.
It indicates that possible surface wave poles are on the real axis of kz1

plane. Note that although the computational load of the new sampling
path is approximately equal to O

[
(1/s)3

]
, the CPU time used for the

computation of the Green’s function is still negligible compared with
the matrix solving part in the MoM [17].

We consider the same structure in [25, Fig. 2]. Fig. 8 shows the
plots of Gq for two values of αs and βs together with the accurate
results. They are both accurate with small ρ and go further along ρ.

In another example, the example is shown with the same structure
in Fig. 2. We make the new sampling path represent dyadic Green’s
function by spherical waves in the second layer where the source and
field points are. The results are shown in Fig. 9 with different values
of α and β by the new sampling path and γ = 0.2. γ is the same
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Table 1. performances of the new sampling path for the different αs
and βs.

α, β M on Cap1 M on Cap2 ρmax CPU-time(sec)

[17] 5 26 15.92λ0 0.19

α = 0.2, β = 0.2 43 8 44.86λ0 0.61

α = 0.2, β = 0.1 79 9 79.77λ0 2.11

α = 0.2, β = 0.05 149 9 159.15λ0 12.06

Figure 8. Spatial domain Gq obtained by new sampling path.

parameter used in [17]. It shows that the valid range is larger for
smaller β. So it indicates the singular points are on the real axis of
kz2 plane. The improvement of changing path from in kz5 plane [17]
to in kz2 plane ensures the extraction of z and z′. Therefore, for large
volume objects, especially that with large scale in the vertical direction
ẑ, the splitting procedure cuts the time requirement dramatically [20].

4.2. Lossy Case

To show the efficiency of the new sampling path to calculate the
dyadic Green’s function in lossy structure, we consider the same lossy
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Figure 9. Spatial domain Gxx
A22 obtained by new sampling path with

different β.

Figure 10. Spatial domain Gq obtained by the sampling path.
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structure in [19]. For lossy cases, α, β don’t need to satisfy the
condition of αβ≥ ε′i tan δ/2 [27]. Fig. 10 shows the plots of Gq for
two values of α and β together with the numerical integral results.
The path for α = 0.4, β = 0.05 can approximate more accurate results
in far field region than the path for α = 0.4, β = 0.1, because some
part of the former path is in the fourth quadrant of kρ plane where the
surface wave poles are. And it indicates that the range for lossy cases
still can be even accurate up to 160λ0 as for the lossless cases for small
α, β.

5. CONCLUSION

In this paper we make clear the contribution of surface wave in
spectral domain and spatial domain dyadic Green’s function. Based
on this finding, we contrive a new sampling path which can sample the
fast variations around surface wave poles both for lossless and lossy
media. And the range can even accurate up to 160λ0 both for both
of them. So the surface wave poles contribution can be automatically
incorporated in spatial domain dyadic Green’s function with closed
form. Besides, this new sampling path which can approximate the
spatial domain Green’s function by the wave number kzi (i is the layer
number where the source and field points are) ensures the extraction of
z and z′. Therefore the method cuts the time requirement dramatically
especially for objects with large scale in ẑ direction.
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