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Abstract—Recently developed multiresolution frequency domain
(MRFD) technique is applied to two-dimensional electromagnetic
scattering problems. Scattered field formulation and perfectly
matched layer is implemented into the MRFD formulation. Far
field distributions of dielectric and perfectly electric conductor (PEC)
bodies are calculated and bistatic echo widths of these structures are
presented. Good agreement between MRFD and FDFD results is
recognized. It is observed that the MRFD technique demonstrates
superior computational efficiency characteristics compared to the
traditional FDFD technique.

1. INTRODUCTION

Numerous researchers have extensively used the Finite Difference Fre-
quency Domain (FDFD) technique to analyze electromagnetic scat-
tering problems successfully [1–3]. FDFD presents a mathematically
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simple, versatile and extremely stable way of solving Maxwell’s equa-
tions in the frequency domain, but it generally requires large amounts
of computer memory and simulation time. The disadvantages of this
method led researchers to develop the MRFD scheme [4, 5], a mathe-
matically intensive technique that consumes computer resources more
efficiently, thus requires less computer memory and simulation time.

In this work, the MRFD scheme is further expanded to the
analysis of open space problems in the context of scattering from
two-dimensional dielectric and PEC bodies. The pure scattered field
formulation [6, 7] and Berenger’s [8] perfectly matched layer (PML) is
implemented into the MRFD formulation.

The efficiency of the MRFD scheme depends on the characteristics
of the wavelet base used for the expansion of unknown fields. For
an effective MRFD algorithm, the appropriate wavelet base should
have certain properties; such as compact support, symmetry, regularity
(smoothness) and maximum number of vanishing moments [4]. The
MRFD formulation in this work is based on Cohen-Daubechies-
Feauveau family of wavelets [9], in particular the CDF (2,2) wavelet,
which accommodates all the desired characteristics listed above.

2. FORMULATION

2.1. General Scattered Field Formulation

The formulation developed in this paper is based on the pure
scattered field formulation in which the total field is the sum of
the known incident and the unknown scattered fields [6, 7]. This
formulation evolves from the linearity of Maxwell’s equations and the
decomposition of the total electric and magnetic fields into an incident
field and a scattered field, that is:

⇀

Etotal =
⇀

Einc +
⇀

Escat (1a)
⇀

Htotal =
⇀

H inc +
⇀

Hscat. (1b)

The incident field is the field that would exist in the computational
domain in which no scatterers exist and therefore satisfies the
Maxwell’s equations:

∇×
⇀

Einc = −jωµo

⇀

H inc (2a)

∇×
⇀

H inc = +jωεo

⇀

Einc. (2b)

The total fields also satisfy the Maxwell’s equations by definition:

∇×
⇀

Etotal = −jωµ
⇀

Htotal (3a)
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∇×
⇀

Htotal = +jωε
⇀

Etotal. (3b)

Using the scattered field decomposition (1), the curl equations (2
and 3) can be combined to yield:

∇×
⇀

Escat + jωµ
⇀

Hscat = jω (µo − µ)
⇀

H inc (4a)

∇×
⇀

Hscat − jωε
⇀

Escat = jω (ε − εo)
⇀

Einc. (4b)

Curl equations (4) can be simplified into three scalar equations
for the TMZ polarized wave which are valid inside the original
computational domain (non-PML region):

Hscat,x +
1

jωµx

∂Escat,z

∂y
=

µo − µx

µx
Hinc,x (5a)

Hscat,y −
1

jωµy

∂Escat,z

∂x
=

µo − µy

µy
Hinc,y (5b)

Escat,z +
1

jωεz

∂Hscat,x

∂y
− 1

jωεz

∂Hscat,y

∂x
= −εz − εo

εz
Einc,z. (5c)

In order to have a finite computational space, an absorbing
boundary condition surrounding the computational space should be
implemented to absorb the outgoing waves without reflection. The
termination of the computational domain is based on the PML
approach. The PML technique is applied by constructing an
anisotropic PML absorber just outside the original computational
domain. The extended computational domain for a 2D problem is
illustrated in Fig. 1. In the two dimensional case, on the left and right
side of the computational domain, the absorbing layers only have non-
zero conductivity in the x direction, i.e., σe

y = 0 and σm
y = 0. Similarly,

the conductivities in the y direction is non-zero on the top and bottom
sides. In the four corners all conductivities are non-zero.

Properties of the PML layer have been chosen to effectively absorb
all outgoing waves so the theoretical reflection from the PML layer
should be zero; however some reflection may occur due to numerical
discretization. To reduce this reflection, both electric and magnetic
conductivities are chosen to increase from zero at the vacuum-PML
interface to a value σmax at the outer layer of the PML. σmax can be
determined from [8] as:

σmax = −ε0cn ln [R(0)]
2δPML

(6)

with n being 1, 2, or 3 for a constant conductivity, a linear conductivity,
or a parabolic conductivity profile, respectively. The parameter δPML
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Figure 1. The extended computational domain for 2-D problems.

is the PML layer thickness, c is the speed of light in vacuum, and R(0)
is the theoretical reflection factor at normal incidence.

The conductivity distribution inside the absorbing layers can be
determined as:

σ(h) = σmax

(
h

δPML

)n+1

(7)

where h is the distance from the vacuum-PML interface to a point
inside the PML media. These relations make the PML layers a seamless
transition from the computational domain to the PEC wall.

Following the notations of [10], inside the PML region, the unsplit-
field PML equations can be written as:

Hx =
1

(jωµo + σm
z )

∂Ey

∂z
− 1(

jωµo + σm
y

) ∂Ez

∂y
(8a)

Hy =
1

(jωµo + σm
x )

∂Ez

∂x
− 1

(jωµo + σm
z )

∂Ex

∂z
(8b)

Hz =
1(

jωµo + σm
y

) ∂Ex

∂y
− 1

(jωµo + σm
x )

∂Ey

∂x
(8c)

Ex =
1(

jωεo + σe
y

) ∂Hz

∂y
− 1

(jωεo + σe
z)

∂Hy

∂z
(8d)

Ey =
1

(jωεo + σe
z)

∂Hx

∂z
− 1

(jωεo + σe
x)

∂Hz

∂x
(8e)
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Ez =
1

(jωεo + σe
x)

∂Hy

∂x
− 1(

jωεo + σe
y

) ∂Hx

∂y
. (8f)

The 2D TMZ unsplit-field PML equations which are valid inside
the PML region can be obtained from (8) as:

Hx +
1(

jωµo + σm
y

) ∂Ez

∂y
= 0 (9a)

Hy −
1

(jωµo + σm
x )

∂Ez

∂x
= 0 (9b)

−Ez +
1

(jωεo + σe
x)

∂Hy

∂x
− 1(

jωεo + σe
y

) ∂Hx

∂y
= 0. (9c)

Two sets of equations, one for the non-PML region (5) and one
for the PML region (9) are derived. Since these equations are similar,
it is possible to combine them into a single set of equations which is
valid in the entirety of the computational space:

Hscat,x +
1

jωµxy

∂Escat,z

∂y
=

(µo − µxi)
µxi

Hinc,x (10a)

Hscat,y −
1

jωµyx

∂Escat,z

∂x
=

(µo − µyi)
µyi

Hinc,y (10b)

−Escat,z +
1

jωεzx

∂Hscat,y

∂x
− 1

jωεzy

∂Hscat,x

∂y
=

(εzi − εo)
εzi

Einc,z (10c)

The material parameters are distributed differently in the PML
and non-PML regions. In the non-PML region the material parameter
distribution is described by:

µxy = µx, µyx = µy

µxi = µx, µyi = µy (11)
εzx = εzy = εzi = εz.

The material parameters inside the PML region are:

µxy = µo +
σm

y

jω
, µyx = µo +

σm
x

jω

µxi = µo, µyi = µo (12)

εzx = εo +
σe

x

jω
, εzy = εo +

σe
y

jω
, εzi = εo.
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2.2. MRFD Update Equations

In order to generate the MRFD update equations for the TMZ

polarized waves, the computational space should be discretized into
cells. The locations of the field vectors and material parameters
associated with each cell should be defined. The two-dimensional Yee
grid [11] shown in Fig. 2 is used for discretization of the computational
domain.

The positions of the field components and material parameters
are shown in Fig. 2. All values of ε are associated with electric field
components and all values of µ are associated with magnetic field
components.

A general 3D MRFD formulation based on the biorthogonal CDF
(2,2) wavelet is introduced in [5]. The update equations for 2D waves
can be deduced from the 3D update equations of [5] as:

Hscat,x(i, j) +
1

jωµxy(i, j)∆y

3∑
l=1

a(l)[Escat,z(i, j+l)−Escat,z(i, j−l+1)]

=
µo − µxi(i, j)

µxi(i, j)
Hinc,x(i, j) (13a)

Hscat,y(i,j) −
1

jωµyx(i, j)∆x

3∑
l=1

a(l)[Escat,z(i+l, j)−Escat,z(i−l+1, j)]

=
µo − µyi(i, j)

µyi(i, j)
Hinc,y(i, j) (13b)

−Escat,z(i,j)+
1

jωεzx(i, j)∆x

3∑
l=1

a(l)[Hscat,y(i+l−1,j)−Hscat,y(i−l,j)]

− 1
jωεzy(i, j)∆y

3∑
l=1

a(l)[Hscat,x(i, j+l−1)−Hscat,x(i, j−l)]

=
εzi(i, j) − εo

εzi(i, j)
Einc,z(i, j) (13c)

where the a(l) coefficients [12] are listed in Table 1.

Table 1. The a(l) coefficients.

l 1 2 3
a(l) 1.2291667 −0.0937500 0.0104167
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Figure 2. The positions of field components and material parameters
on the 2D Yee cell.

2.3. Incident Field Expressions

The TMZ incident plane wave presented in Fig. 3(a) can be expressed
as:

⇀

Einc(
⇀
r ) = E0ẑe−j�k.

⇀
r (14)

where E0 specifies the amplitude of the plane wave. The propagation
vector �k and the position vector ⇀

r can be written as:

⇀

k = −k(cos φincx̂ + sinφincŷ) (15a)
⇀
r = xx̂ + yŷ (15b)

Since the incident field is assumed to be propagating in free space,
k = k0 = ω

√
µ0ε0. After the performing the dot product of (15a) and

(15b), (14) becomes:

⇀

Einc(
⇀
r ) = E0ẑejk(x cos φinc+y sin φinc). (16)

The
⇀

H field components can be extracted from the
⇀

E field:

⇀

H inc(�r) =
1
η

[
k̂ ×

⇀

E(⇀
r )

]
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Figure 3. Incident plane waves in a 2D space: (a) TMZ , (b) TEZ .

=
1
η
E0 cos φincŷejk(x cos φinc+y sin φinc)

−1
η
E0 sinφincx̂ejk(x cos φinc+y sin φinc). (17)

In summary, the incident field components for 2D TMZ problems
are:

Einc,z = E0e
jk(x cos φinc+y sin φinc) (18a)

Hinc,x = −1
η
E0 sinφince

jk(x cos φinc+y sin φinc) (18b)

Hinc,y =
1
η
E0 cos φince

jk(x cos φinc+y sin φinc). (18c)

The incident field components for 2D TEZ wave depicted in
Fig. 3(b) can be also obtained in a similar fashion as:

Hinc,z = H0e
jk(x cos φinc+y sin φinc) (19a)

Einc,x = ηH0 sinφince
jk(x cos φinc+y sin φinc) (19b)

Einc,y = −ηH0 cos φince
+jk(x cos φinc+y sin φinc). (19c)

3. NUMERICAL RESULTS

The finite difference and multiresolution approaches are applied to the
two dimensional problems of scattering of a plane wave from dielectric
and PEC cylinders. The fields in the computational domain and
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Figure 4. 2D dielectric cylinders illuminated by TMZ plane wave: (a)
square cylinder, (b) circular cylinder.

far field region are calculated and co-polarized bistatic radar cross
section for each problem is presented. The source codes are written in
MATLAB and executed using a laptop PC with a Pentium M processor
at 1.6 GHz. The coefficient matrices are stored in sparse matrices to
reduce memory requirements. For all the problems, number of air
layers (NAIR) and PML layers (NPML) is set to 4 and 8, respectively
and a parabolic variation of conductivity with R(0) = 10−17 is used
in the PML. For each example, simulation parameters and consumed
computer resources are summarized in Table 2.

Table 2. Simulation parameters and computer resources consumed
by the two methods.

Cell Size 
(mm) 

Comp. 
Space
(cells)

Matrix
Size

(kbyte)

Time 
(sec)

FDFD 2.5 124   124 3466 113.9Square
Dielectric
Cylinder MRFD 6.25 64   64 2154 46.1

FDFD 2.0 174   174 6757 668.1Circular
Dielectric
Cylinder MRFD 5.0 84   84 3733 168.4

FDFD 2.5 424   124 11873 2473.1Dielectric
and PEC 
Cylinders MRFD 6.25 184   64 6295 666.4

×

×

×

×

×

×

First, the problem of scattering from a square dielectric cylinder
with εr = 4, illustrated in Fig. 4(a), is considered. The width of
the square cylinder is 25 cm. The cylinder is illuminated by a 3 GHz
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incident TMZ plane wave with 0◦ incidence angle off the x-axis.
Compared to the FDFD grid with (∆x = ∆y = 2.5 mm = λmin/20),
the MRFD grid is coarser (∆x = ∆y = 6.25 mm = λmin/8), where λmin

is the wavelength inside the scatterer. The scattered co-polarized far
field, represented by bistatic echo width, is presented in Fig. 5. Both
methods yield similar results, however compared to the finite difference
technique, memory and processing time savings of the multiresolution
technique is 37.8% and 59.6%, respectively, for the case at hand.
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Figure 5. The co-polarized bi-static echo width (σ/λo in dB) of the
square cylinder illuminated by an incident TMZ plane wave.

The second example considered is the problem of scattering from
a circular dielectric cylinder with εr = 4, depicted in Fig. 4(b).
The cylinder is illuminated by an incident 3 GHz TMZ plane wave
with 180◦ incidence angle off the x-axis. The MRFD sampling rate
(∆x = ∆y = 5 mm = λmin/10) is kept low compared to the higher one
in the FDFD (∆x = ∆y = 2 mm = λmin/25). As shown in Fig. 6, there
is a good agreement between MRFD and FDFD results. For this
case, the memory and processing time savings of the multiresolution
technique is 44.8% and 74.8%, respectively.

The last example considered is the problem of scattering from two
bodies with different material formation: a square dielectric cylinder
with εr = 4 and a square PEC cylinder, as illustrated in Fig. 7. The
computational domain is excited by a 3 GHz incident TMZ plane wave
with 90◦ incidence angle off the x-axis.
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Figure 6. The co-polarized bi-static echo width (σ/λo in dB) of the
circular cylinder illuminated by an incident TMZ plane wave.
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Figure 7. 2D dielectric and PEC cylinders illuminated by TMZ plane
wave.

Again, the far field distribution for the problem is calculated
with the MRFD and FDFD techniques. The cell sizes are set to
6.25 mm and 2.5 mm for the MRFD and FDFD lattice, respectively.
The scattered co-polarized far field for the problem is shown in Fig. 8.
Both methods yielding comparable accuracy, memory and simulation
time requirements of the multiresolution technique is 47% and 73%
lower than the FDFD.
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Figure 8. The co-polarized bistatic echo width (σ/λo in dB) for
the dielectric and PEC squares illuminated by an incident TMZ plane
wave.

4. CONCLUSION

In this work, the multiresolution frequency domain scheme for the
scattering analysis of two-dimensional targets is developed. The PML
boundary condition and pure scattered field approach is successfully
implemented into the MRFD formulation. The newly developed
method is validated by analyzing scattering from dielectric and
PEC scatterers. The results from MRFD are in good agreement
in comparison to the FDFD results. Results indicate that MRFD
technique promises substantial savings in terms of execution time and
memory requirements.

REFERENCES

1. Sharkawy, M. A., V. Demir, and A. Z. Elsherbeni, “The
iterative multi-region algorithm using a hybrid finite difference
frequency domain and method of moment techniques,” Progress
In Electromagnetics Research, PIER 57, 19–32, 2006.

2. Kuzu, L., V. Demir, A. Z. Elsherbeni, and E. Arvas,
“Electromagnetic scattering from arbitrarily shaped chiral objects



Progress In Electromagnetics Research, PIER 79, 2008 399

using the finite difference frequency domain method,” Progress In
Electromagnetics Research, PIER 67, 1–24, 2007.

3. Norgren, M., “A hybrid FDFD-BIE approach to two-dimensional
scattering from an inhomogeneous biisotropic cylinder,” Progress
In Electromagnetics Research, PIER 38, 1–27, 2002.

4. Gokten, M., A. Z. Elsherbeni, and E. Arvas, “The multiresolution
frequency domain method for general guided wave structures,”
Progress In Electromagnetics Research, PIER 69, 55–66, 2007.

5. Gokten, M., A. Z. Elsherbeni, and E. Arvas, “A multiresolution
frequency domain method using biorthogonal wavelets,” ACES
Conf., Miami, FL, 2006.

6. Kunz, K. S. and R. J. Luebbers, The Finite Difference Time
Domain Method for Electromagnetics, CRC Press LLC, Boca
Raton, 1993.

7. Taflove, A. and S. C. Hagness, Computational Electrodynamics:
The Finite-Difference Time-Domain Method, 3rd ed., Artech
House, Boston, MA, 2005.

8. Berenger, J. P., “A perfectly matched layer for the absorption
of electromagnetic waves,” Journal of Computational Physics,
Vol. 114, 185–200, 1994.

9. Daubechies, I., Ten Lectures on Wavelets, Society for Industrial
and Applied Mathematics, Philadelphia, PA, 1992.

10. Al-Sharkawy, M., V. Demir, and A. Z. Elsherbeni, “Iterative
Multi-Region Technique for large scale electromagnetic scattering
problems — Two dimensional case,” Radio Science, Vol. 40, No. 5,
September 2005.

11. Yee, K. S., “Numerical solution of initial boundary value
problems involving Maxwell’s equations in isotropic media,” IEEE
Transactions on Antennas and Propagation, Vol. 14, 302–307,
1966.

12. Dogaru, T. and L. Carin, “Multiresolution time-domain algorithm
using CDF biorthogonal wavelets,” IEEE Transactions on
Microwave Theory and Techniques, Vol. 49, No. 5, 902–912, May
2001.


