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Abstract—The adaptive beamformers often suffer severe performance
degradation when there exist uncertainties in the steering vector of
interest. In this paper, we develop a new approach to robust adaptive
beamforming in the presence of an unknown signal steering vector.
Based on the observed data, we try to estimate an equivalent direction-
of-arrival (DOA) for each sensor, in which all factors causing the
steering vector uncertainties are ascribed to the DOA uncertainty
only. The equivalent DOA of each sensor can be estimated one by
one with the assumption that the elements of the steering vector
are uncorrelated with each other. Using a Bayesian approach, the
equivalent DOA estimator of each sensor is a weighted sum of a set
of candidate DOA’s, which are combined according to the value of the
a posteriori probability for each pointing direction. In this way, the
signal steering vector and the diagonal loading sample matrix inversion
(DL-SMI) version adaptive beamformer can be obtained. Numerical
simulations illustrate the robustness of the proposed beamforming
algorithm.
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1. INTRODUCTION

Adaptive beamforming is widely used in array signal processing for
enhancing a desired signal while suppressing interference and noise
at the output of an array of sensors [1, 2]. Compared with the
data-independent beamformers, the adaptive beamformers have better
resolution and much better interference rejection capability. However,
the adaptive beamformers are rather sensitive to the steering vector
mismatches, which will degrade the performance of the adaptive
beamformers severely. The causes of steering vectors mismatches in
the practical applications include direction-of-arrival (DOA) errors [3],
imperfect array calibration and/or distorted antenna shape [4], array
manifold mismodeling due to source wavefront distortions resulting
from environmental inhomogeneities [5], near-far problem [6], source
spreading and local scattering [7] as well as other effects [8]. Therefore,
the robustness against the steering vector uncertainties in adaptive
beamformers is highly required [9–11].

Several approaches are known to be able to partly overcome
the problem of arbitrary steering vector mismatches. The most
popular of them are the diagonal loading approaches [12] and the
eigenspace-based beamforming [13]. These pioneer works certainly
have some drawbacks, but they ignite the adaptive beamforming
as a hot research topic in the following years. Recently, based on
the worst-case performance optimization, some new approaches were
proposed in [14–16], which ensure that the distortionless response are
maintained for all possible steering vector. In essence, this approach
belongs to the class of diagonal loading techniques, but they can
improve the performances of the adaptive beamformers by finding
the optimal diagonal loading factor. In 2004, the authors derived the
maximum likelihood (ML) estimator for the deterministic signal, the
minimum mean square error (MMSE) estimator and the maximum a
posteriori (MAP) estimator for the random signal in the presence of the
steering vector uncertainties [17]. More recently, an adaptive Bayesian
beamforming with order recursive implementation for steering vector
uncertainties was proposed in [18], which has the form of a Kalman
filter that is recursive in order instead of time.

Though many researchers have made great contributions to the
adaptive beamforming, there still exist many problems to be addressed
further. For example, in the work of [18], the advantage of reducing
computational complexity while maintaining an accurate estimate
cannot be held because it is not easy to know a priori about which
sensors have a small uncertainty level. Moreover, when the steering
vector is exactly known, this beamformer is ineffective because it
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degenerates into a sample matrix inversion (SMI) adaptive version of
the minimum variance distortionless response (MVDR) beamformer.

In fact, all the above beamforming algorithms are devoted to
finding the optimal weight vector directly without estimating the
actual steering vector explicitly. In this paper, we will firstly estimate
the equivalent DOA of each sensor from the array observations, which
results the steering vector and the robust adaptive beamformer. In a
statistical sense, all factors causing the steering vector uncertainties
can be ascribed to the DOA uncertainty only. Thus, each sensor will
undoubtedly has an unique equivalent DOA, and it is reasonable that
the performance of the proposed adaptive beamformer can probably
be improved.

The rest of the paper is organized as follows. Section 2 contains
background material. A new robust adaptive beamformer based on
equivalent DOA method is developed in Section 3, and performance
comparisons are presented in 4. Finally, Section 5 concludes this paper.

2. BACKGROUND

The output of a narrowband beamformer is given by

y(k) = ωHx(k) (1)

where k is the time index, x(k) = [x1(k), · · · , xN (k)]T ∈ CN×1 is
the complex vector of array observations, ω = [ω1, · · · , ωN ]T ∈ CN×1

is the complex vector of beamformer weights, N is the number of
array sensors, and (·)T and (·)H denote the transpose and Hermitian
transpose, respectively. The observation vector has the form

x(k) = as(k) + i(k) + n(k), k = 1, 2, · · · (2)

where a is the signal steering vector, s(k), i(k), and n(k) are the desired
signal, interference and noise components, respectively. The source,
interference and noise are assumed to be zero-mean, complex Gaussian
white processes that are statistically independent. The weight vector ω
is chosen to maximize the signal-to-interference-plus-noise ratio (SINR)

SINR =
σ2

s |ωHa|2
ωHRi+nω

(3)

where

Ri+n = E
{
(i(k) + n(k))(i(k) + n(k))H

}
(4)
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is the N × N interference-plus-noise covariance matrix, and σ2
s is

the signal power. The most popular approach to solving this
problem is to use the MVDR beamforming [19], which maintains a
distortionless response toward the desired signal and minimizes the
output interference-plus-noise power. Hence, the maximization of (3)
is equivalent to

min
ω

ωHRi+nω s.t. ωHa = 1, (5)

which can be solved by the Lagrange multiplier method and the
solution is given by

ωMV =
R−1

i+na

aHR−1
i+na

. (6)

In practical applications, the exact interference-plus-noise covari-
ance matrix Ri+n is unavailable. In general, the sample covariance
matrix with K-snapshots [19, 20],

R̂K =
1
K

K∑
k=1

x(k)x(k)H . (7)

is used instead of (4). Replacing Ri+n in (6) with R̂K , we get a SMI
adaptive version of the MVDR beamformer as

ωSMI =
R̂

−1
K a

aHR̂
−1
K a

. (8)

However, the SMI algorithm has an essential shortcoming that it does
not provide sufficient robustness against the mismatch between the
presumed and actual signal steering vectors. As we know, the DL-
SMI algorithm is robust to the signal steering vector mismatches and
small snapshots size [12]. The essence of this approach is to replace the
sample covariance matrix R̂K by a diagonal loading covariance matrix

R̂K,DL = R̂K + ξI, (9)

where, ξ is a diagonal loading factor, and I is the identity matrix.
Hence, the DL-SMI adaptive version of the MVDR beamformer is

ωDL−SMI =
R̂

−1
K,DLa

aHR̂
−1
K,DLa

. (10)

Typically, the diagonal loading factor ξ is chosen to be about 10σ2
n,

where σ2
n is the noise power in a single sensor. As a result, the choice

in an ad hoc way may be not optimal.
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3. ROBUST BEAMFORMER BASED ON EQUIVALENT
DOAS METHOD

In this section, based on equivalent DOAs method, we develop a new
robust adaptive beamforming, which ascribes all the steering vector
uncertainties to the DOA uncertainty only.

In general, the steering vector a can be modeled as an N × 1
complex Gaussian random vector with mean ā and covariance matrix
Ca, that is,

a ∼ CN (ā,Ca), (11)

where ā is the presumed steering vector. The covariance matrix
Ca captures the second-order statistics of the uncertainties in the
steering vector. By assuming the elements of the steering vector are
uncorrelated with each other, the covariance matrix Ca is diagonal and
can be written as

Ca =



σ2

1
. . .

σ2
N


 , (12)

where the diagonal element σ2
m denotes the variance of the mth element

of the steering vector. Even though Ca may be actually non-diagonal,
it typically can be approximated by the scaled identity matrix for the
simplicity reason [21].

In a statistical sense, all the factors causing the steering
vector uncertainties can be ascribed to the DOA uncertainty only.
Consequently, each sensor has an unique equivalent DOA, not a
common uniform DOA. And then, the equivalent DOAs of an array
sensors can be expressed in a vector form as

θeq = [θ1eq , · · · , θNeq ]
T . (13)

Because the elements of the steering vector are assumed to be
uncorrelated with each other, the process of estimating the steering
vector can be simplified to estimate the equivalent DOAs one by one.
The equivalent DOAs can be estimated as the following process. When
an equivalent DOA of one sensor is being estimated, the other sensors’
DOAs are assumed to be known and fixed. As soon as the equivalent
DOA of one sensor is estimated, it is regarded as known when the
others are being estimated. Using this method, the equivalent DOA of
each sensor can be estimated one by one.

Using a Bayesian approach, the equivalent DOA θneq can be
assumed to be a discrete random variable with a priori pdf p(θ) defined



282 Gu et al.

on a discrete set of L points Θ = {θ1 · · · θL}. Let X denote a collection
of K consecutive snapshots of the received data vector x(k). The
MMSE estimator of the equivalent DOA θneq is the conditional mean
of θ, given X. It can be written as

θ̂neq = E{θ|X} =
L∑

i=1

p(θi|X)θi (14)

where p(θi|X) is the a posteriori pdf of θi given the observations X.
Therefore, the Bayesian estimator of the equivalent DOA is a weighted
sum of the discrete set Θ, which are combined according to the value
of the a posteriori probability for each pointing direction.

From [22], for each θi, the a posteriori pdf is given by

p(θi|X) =
p(θi)p(X|θi)∑L

j=1 p(θj)p(X|θj)
, i = 1, · · · , L (15)

with

p(X|θi) =
K∏

k=1

1
πN |Rx(θi)|

exp{−x(k)HR−1
x (θi)x(k)}

= π−NK |Rx(θi)|−Kexp

{
−

K∑
k=1

x(k)HR−1
x (θi)x(k)

}
,

(16)

where |·| is the determinant operator. Simplification as [23], the
approximate a posteriori pdf is given by

p̂(θi|X) = c p(θi) exp

{
Kγ

(
a(θi)HR̂

−1
K a(θi)

)−1
}
, (17)

where c is a normalization factor independent of θi, and γ is a constant
defined as

γ ≡ N

σ2
n

Nσ2
s/σ

2
n

σ2
s(1 + Nσ2

s/σ
2
n)

. (18)

Substituting (17) in (14), θ̂neq , the MMSE estimator of the
equivalent DOA of the nth sensor, can be obtained. And then, it is
regarded as known when the equivalent DOAs of the other sensors are
being estimated, till all equivalent DOAs have been estimated. Hence,
the steering vector a is given by

a(θ̂eq) = [a1(θ̂1eq), · · · , aN (θ̂Neq)]
T . (19)
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When the steering vector a(θ̂eq) is determined, based on the DL-SMI
adaptive version of the MVDR beamforming method, the proposed
robust beamformer has the form of

ωEQ =
R̂

−1
K,DLa(θ̂eq)

a(θ̂eq)HR̂
−1
K,DLa(θ̂eq)

. (20)

To summarize, the proposed robust adaptive beamformer based
on the equivalent DOAs method performs the following steps to update
the beamformer weights.

1) R̂
−1
K,DL =

(
1
K

K∑
k=1

x(k)x(k)H + ξI

)−1

2) initialize θeq, Θ = {θ1 · · · θL}
for n = 1, · · · , N
for i = 1, · · · , L

vi = R̂
−1
K,DLa(θi)

P̂MV,DL(θi) = (a(θi)Hvi))−1

p̂(θi|X) = p(θi)exp{KγP̂MV,DL(θi)}
end

c =

{
L∑

i=1

p̂(θi|X)

}−1

θ̂neq = c

L∑
i=1

p̂(θi|X)θi

end

3) ωEQ =
R̂

−1
K,DLa(θ̂eq)

a(θ̂eq)HR̂
−1
K,DLa(θ̂eq)

.

Hence, the overall computational complexity of the proposed
robust beamformer is O(N3). This is the same order of complexity
as that of the SMI algorithm.

4. SIMULATIONS

In the simulations, a uniform linear array (ULA) with N = 10
omnidirectional sensors spaced half a wavelength apart is considered.
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For each scenario, 200 Monte Carlo simulation runs are used to
obtain each simulated point. The beampatterns shown are obtained
from one Monte Carlo realization only. In all examples, we assume
that the DOAs of two interferences are 30◦ and 50◦, respectively.
Both interferences are assumed to have the same interference-to-
noise ratio (INR), 30 dB. Seven different beamforming algorithms
are compared in terms of the mean output SINR: the proposed
robust beamformer (20), the SMI beamformer (8), the DL-SMI
beamformer (10), the eigenspace-based beamformer [13], the Bayesian
beamformer [23], the worst-case based robust beamformer [14], and
the Bayesian beamformer with order recursive implementation [18]. In
addition, the optimal SINR is also shown in all figures. The diagonal
loading factor ξ = 10σ2

n is taken in the proposed robust beamformer
and the the DL-SMI beamformer. In the worst-case based robust
beamformer, the upper bound of the norm of the steering vector
mismatch ε is set to be a constant 3, as [14] denotes. In the Bayesian
beamformer [18], the order of iteration is assumed to be equal to
10, the number of array sensors, if not otherwise specified. In the
proposed robust beamformer, the initialized DOA of each sensor is
set to θs, and the Θ is composed of L = 11 evenly spaced points at
{−5.739,−4.589,−3.440,−2.292,−1.146, 0, 1.146, 2.292, 3.440, 4.589,
5.739} + θs, where θs is the presumed DOA. The Θ is also adopted
in the Bayesian beamformer [23]. The a priori pdf is uniform with
p(θ) = 1

11 . The parameter γ is set to 0.3, as [23] denotes. In all of the
beamformers, K = 50 snapshots are used.

4.1. Example 1: Exactly Known Signal Steering Vector

In the first example, we simulate a scenario where the actual signal
steering vector is exactly known, hence, the covariance matrix Ca is an
N ×N zero matrix. In this example, the plane-wave signal is assumed
to impinge on the array from θs = 3◦.

Figure 1 compares the performances of different beamforming
algorithms in terms of the mean output array SINR versus the
input signal-to-noise ratio (SNR). The proposed robust beamformer
outperforms the SMI, the DL-SMI and the eigenspace-based
beamformers, achieving a performance that is consistently close to the
optimal SINR for all values of SNR. Because Ca = 0N×N when the
signal steering vector is exactly known, the Bayesian beamformer (14)
in [18] degenerates into a SMI beamformer by the fact that the desired
signal power σ2

s can be estimated as the value of the minimum variance
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Figure 1. Example 1: Output SINR versus SNR.

(MV) spatial spectral estimate with the presumed steering vector [24],

σ̂2
s =

1

āHR̂
−1
K ā

, (21)

and hence, they have the same performance as Fig. 1 shows.
In addition, the beampatterns of the proposed robust beamformer,

DL-SMI beamformer, eigenspace-based beamformer and the Bayesian
beamformer [18] are compared in Fig. 2 for SNR = −10 dB.

4.2. Example 2: Signal Look Direction Mismatch

In the second example, a scenario with the signal look direction
mismatch is considered. We assume that both the presumed and
actual signal spatial signatures are plane waves impinging from the
DOAs 3◦ and 5◦, respectively. This corresponds to a 2◦ mismatch in
the signal look direction.

The output SINRs of several different beamforming algorithms
versus the input SNR are compared in Fig. 3. From Fig. 3, the
performance of the proposed robust beamformer is close to the optimal
SINR for all values of SNR, which is better than the others. Unlike
that of the exactly known signal steering vector, the performance of
the DL-SMI beamformer degrades severely especially at high SNR
because of DOA mismatch. Because the steering vector uncertainties
in this example is caused by the DOA mismatch only, the Bayesian
beamformer [23] performs as well as the proposed robust beamformer.
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Figure 2. Example 1: Sample beampatterns from one trial. Solid line
indicates desired signal location, and dashed line indicate interferer
location.
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Figure 3. Example 2: Output SINR versus SNR.

4.3. Example 3: Random Perturbation of the Elements in a
Steering Vector

In the third example, the perturbations of the elements in a steering
vector are assumed to be random with mean DOA 3◦, which is a more
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practical scenario than the above two examples. In this example,
the covariance matrix Ca is assumed to be diagonal with randomly
generated elements and it’s trace tr(Ca) is normalized to 1.

In Fig. 4, the mean output SINR of these beamforming algorithms
versus the input SNR are compared. The proposed robust beamformer
performs almost as well as the former two scenarios, whereas the others
are not. Because the equivalent DOAs of the array sensors are not
uniform, namely, the steering vector uncertainties are not caused by
the DOA uncertainty only, the Bayesian beamformer [23] loses it’s
robustness, especially at high SNR. Such phenomena also occur in the
worst-case based robust beamformer [14] and the DL-SMI beamformer
(10).
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Figure 4. Example 3: Output SINR versus SNR.

5. CONCLUSION

A robust beamforming based on equivalent DOAs method was
proposed in this paper. All the factors causing the steering vector
uncertainties are regarded as the DOA uncertainty only, and the
equivalent DOAs can be estimated one by one under the assumption
that the elements of steering vector are uncorrelated with each
other. Simulation results show better performance of the proposed
beamformer as compared with several popular robust adaptive
beamforming algorithms.
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