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Abstract—In this paper, a fast integral equation method is developed
for extracting the inductances in RF ICs, RF MEMs, IC packages, and
deep submicron ICs etc. This method combines a recently developed
Multilevel Green’s Function Interpolation Method (MLGFIM) [1, 2]
with the volume integral equation discretized using Volume Loop (VL)
basis functions. In it, instead of using the filaments model to simulate
the currents flowing in the inductors, we use the conventional SWG
basis functions for this kind of basis functions is flexible for problems
with complex geometries. The shortest path finding algorithm is
also used to find the source loop basis functions. The inductance
extractions from the straight line, the spiral inductors, the bump, and
the parallel buses in this paper demonstrate the validity and efficiency
of this hybrid method.

1. INTRODUCTION

Inductance extractions are important issues in designing RFICs, RF
MEMs, IC packages, and deep submicron ICs. We can view this kind
of problems as the low frequency electromagnetic problems [3]. A
lot of methods [4–6] can be used to solve this kind of problems. The
structures we studied are conductors such as interconnects used in deep
submicron techniques [7], spiral inductors used in RFIC [8] and RF
MEMs [9], and bumps used in IC packages [10]. The sizes of them are
in micron and deep submicron scales, while using Method of Moments
(MoM), we can no longer simply consider them as the Perfect Electric
Conducting problems as in [11]. In [12], the filaments model is used
to model the currents. The advantage of filaments model is that it is
simple and efficient for modeling the straight line segments. However,
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if the structures become complex, e.g., the sphere bumps in which the
currents with more than one directions flow unevenly, filaments model
can hardly be used in meshing them. SWG basis functions [13] are one
of the well known basis functions used to model volume displacement
currents. For quasistatic problems, because of the EM decoupling,
recently developed loop tree bases or loop-star bases [14–18] based on
SWG bases should be employed to make the MoM matrix equation
stable. Moreover, for the magneto-quasistatic problems, only volume
loop bases are needed for modeling the divergence free currents [15, 18].
After obtaining a MoM matrix equation using the volume loop basis
in discretizing the volume integral equation, one needs to find a fast
equation solver.

There exist a lot of fast integral equation methods that can be used
to enhance the efficiency of the solution, for instance, FMM [12, 19–
21], CGFFT [22, 23], Pre-corrected FFT [24], SMCG [25], AIM [26],
IceCube [27], IMLMQRF [11, 28], and MLGFIM [1, 2] and so on.
In them, 1) FMM is the fastest method with O(N) complexity for
quasistatic problems; 2) SMCG, CGFFT, Pre-corrected FFT, SMCG,
and AIM are FFT based methods with O(N logN) complexity; 3) Ice
Cube and IMLMQRF are the methods based on matrix compression
technique, i.e., QR factorization, matrix merging, and matrix column
and row sampling techniques; 4) MLGFIM is based on a hierarchical
structure that is similar to FMM but using the Green’s function matrix
interpolation method with QR factorization technique. This method
has a complexity of O(N) [1]. It has been developed for solving full-
wave problems by adopting radial basis functions.

In this paper, we will use MLGFIM with radial basis function
interpolation technique to extract the parasitic inductances that are
encountered in RFICs, RFMEMs and IC packages. We first use the
volume integral equation with volume loop bases to describe this kind
of problems. Consequently, instead of obtaining the volume loop
impedance matrix, we use the method similar to the mesh analysis
introduced in [12]. However, we adopt the SWG bases instead of the
filaments modeling, because SWG bases are more flexible for modeling
the volume objects with complex shapes. For the source voltage
excitation and the source loop basis functions, we find the source path
using the shortest path algorithm [29]. Then, the MLGFIM-Volume
Loop Algorithm that is suitable for magneto-quasistatic problems is
developed. The numerical results in this paper show the validity and
efficiency of MLGFIM-VL.
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2. COMBINATION OF MLGFIM WITH VOLUME LOOP
BASES IN LOW FREQUENCY

For inductance extraction problems, the mixed potential integral
equation can be written as.

E− iωµ0

4π

∫
Ω

dv′
exp(ik|r− r ′|)

|r− r ′| · Jeq(r ′) = −∇φ, (1)

where

Jeq(r) = [−iω(ε(r) − ε0)]E(r)
= τ(r)E(r)

=
−iω(ε(r) − ε0)

−iω · ε(r) · (−iω) · ε(r)E(r)

= (1 − ε0/ε(r)) · [−iω · ε(r)E(r)]
= κ(r) · [−iωD(r)]. (2)

Here, ε(r) = ε0(r) + iσω , ε0 is the dielectric constant of the free
space, σ is the conductivity. Employing the volume loop bases set

{oi}NL
i=1, expanding the displacement current as −iωD =

NL∑
i=1
Ii · oi,

and applying the Galerkin method, (1) can be converted to
¯̄Z ′ · Ī = V̄ , (3)

where

Z ′
mn = −iωµ0

∫
Ωm

dv

∫
Ωn

dv′om(r) ·ḠA · κ(r′)on(r′)

+
∫

Ωm

dvom(r) · κ(r)on(r)/τ(r), (4)

and Ωi is the support of the i-th volume loop basis function.

Vm = −
∫

Ωm

dvom(r) · ∇φ. (5)

Here we define the loop bases as the combination of the SWG bases,
viz.,

om(r) =
N∑

i=1

Pm,i · ji, (6)
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Figure 1. The support of a SWG basis function. It consists of two
adjacent tetrahedrons.

where {ji}N
i=1 is the SWG bases set, and N is the number of SWG

bases used to model the problem. It is known that the SWG bases can
be written as [13]

ji(r) =




ρ+
i

3∆+
i

, r ∈ T+
i

ρ−
i

3∆−
i

, r ∈ T−
i

, (7)

where T±
i are the two adjacent tetrahedrons supporting ji and and

∆±
i are the corresponding volumes of these two tetrahedrons, while

ρ+
i = r− r+

i or ρ−
i = r− r−i and r±i denote the two vertices as shown

in Fig. 1. Consequently, (4) can be rewritten as

Z ′
mn =

N∑
i=1

N∑
j=1

Pm,iPn,j

{
− iωµ0

∫
♦i

dv

∫
♦j

dv′ji(r) ·ḠA · κ(r′)jj(r′)

+
∫
♦j

dvji(r) · κ(r)jj(r)/τ(r)
}

=
N∑

i=1

N∑
j=1

Pm,iPn,jZi,j , (8)

where ♦i is the support of the i-th SWG basis function. Thus,
Equation (3) can be rewritten as

¯̄P · ¯̄Z · ¯̄P
T · Ī = V̄ , (9)

where ¯̄P is a NL − by −N sparse matrix that can be easily generated
according to the relation (6). One of the advantages of applying (9)
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rather than (3) is that no rewriting of the impedance matrix calculation
program is needed when one already has the Method of Moments
program developed using SWG bases.

The i-th tetrahedron 

in the loop 
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Figure 2. The support of a loop basis function.

The loop bases are classified into the closed loop bases and the
unclosed loop bases whose supports are shown in Figs. 2(a) and (b),
respectively. In tetrahedron i of a loop basis function support, the loop
basis function (in which the subscript m is omitted for simplicity) can
be expressed as o(r) = li

3∆i
. We will prove that (5) becomes zero if the

support of the loop basis function is closed and otherwise it equals the
voltage between the two ends of the unclosed loop. This is shown in
Equation (10).

V = −
M∑
i=1

∫
Ti

dvo(r)·∇φ=−
M∑
i=1

∫
Ti

dv∇·o(r)φ=−
M∑
i=1

∮
Ti

dS · o(r)φ

= −
M∑
i=2

[ ∫
Ai,2

dS · li(r)φ/3∆i +
∫

Ai,1

dS · li(r)φ/3∆i

]

= −
{

M−1∑
i=1

[ ∫
Ai,2

dS · li(r)φ/3∆i +
∫

Ai+1,1

dS · li+1(r)φ/3∆i+1

]

∫
A1,1

dS · l1(r)φ/3∆1 +
∫

AM,1

dS · lM (r)φ/3∆M

}
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= −
{

M−1∑
i=2

[
hi,2

3∆i
− hi+1,1

3∆i+1

] ∫
Ai,2

φdS− h1,1

3∆1

∫
A1,1

φdS+
hM,2

3∆M

∫
AM,2

φdS

}

= −
{

M−1∑
i=2

[
hi,2

3∆i
− hi+1,1

3∆i+1

]
Ai,2 φ(ξ)|ξ∈Ai,2

− h1,1

3∆1
A1,1φ(ξ) |ξ∈A1,1

+
hM,2

3∆2
AM,2φ(ξ) |ξ∈AM,2

}

= −{0 − φ(ξ)|ξ∈A1,1
+ φ(ξ)|ξ∈AM,2

}

=
{ 0, if the loop is closed.
φ(ξ)|ξ∈AM,2

− φ(ξ)|ξ∈A1,1
, other else. (10)

where M is the number of tetrahedrons of the loop basis function and
hi,1 and hi,2 are the height respectively perpendicular to areas Ai,1

and Ai,2 that are shown in Fig. 2. In (10) we have used the integration
middle-value theorem.

For a conductor of finite conductivity meshed with tetrahedrons,
if we can find a path of interconnected tetrahedrons between the two
ends of this conductor, we can generate an unclosed source loop basis
function called on whose support is the path, and impose the voltage
between its two ends. Because the topological structure of the meshed
geometry is stored as a graph, we can use the shortest path finding
method to find this path [29]. Fig. 3 shows an inductor structure
and its corresponding shortest path using the shortest path finding
algorithm. This path builds the support of the unclosed loop basis
function. After it, we impose one volt voltage between the two ends
of the conductor, and thus the corresponding excitation entry Vn = 1,
viz., V̄ = [0 · · · , 1, · · · 0]T .

(a)                     (b) 
     

Figure 3. (a) An inductor structure. (b) The shortest path between
its two ends.
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Now, we have fully described the method of generating
Equation (9). In the following, we employ MLGFIM to accelerate
the matrix-vector multiplication ¯̄Z · x̄ (where x̄ = ¯̄P

T · Ī,) in (9).
First, the impedance matrix entries Zi,j are decomposed into

Zi,j = Zx
i,j + Zy

i,j + Zz
i,j , (11)

where

Z∗
i,j =

∫
♦i

dv

∫
♦j

dv′j∗i (r)j∗j (r′)κ(r′)G0(r, r′). (12)

Similarly as in [2], Equations (12) can be written as a generic form.

�i,j =
∫
♦i

dv

∫
♦j

dv′τi(r)τj(r′)κ(r′)G0(r, r′). (13)

Assume that the supports of basis function i and j are respectively
in two well separated cubes Gm and Gn. The Green’s function can
be approximated using radial basis function interpolation technique as
shown in [1, 2]:

G0(r, r′) =
K∑

p=1

K∑
q=1

ωm,p(r)ωn,q(r′)G0(rGm,p, rGn,q)

= ω̄T
m(r) · ¯̄Gmn · ω̄n(r′), (14)

where ωm,p(r) and ωn,q(r′) (defined in Appendix A of [1]) are the p-th
radial basis interpolation polynomials in cube Gm and q-th radial basis
interpolation polynomials in cube Gn, respectively; G0(rGm,p, rGn,q) is
the Green’s function value generated from interpolation point rGn,q in
cube Gn to interpolation point rGm,p in cube Gm; K is the number of
interpolation points in Gm or Gn. Here, we choose the 33 + 23 Tartan
grid presented in [2]. Substituting (14) into (13) gives

�i,j =
∫
♦i

dv

∫
♦j

dv′[τi(r)τj(r′)]ω̄T
m(r) ¯̄Gm,nω̄n(r′)κ(r′)

=

[ ∫
♦i

dvτi(r)ω̄T
m(r)

]
¯̄Gm,n

[ ∫
♦j

dv′τj(r′)ω̄n(r′)κ(r′)

]

= ῡT
m,i · ¯̄Gm,n · ῡ′n,j . (15)
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In (15), ῡ′n,j is not equal to ῡn,i. For the case that κ(r′) is constant
over the problem region, ῡ′n,j = κ · ῡn,j . For finite conductor case,
κ(r′) 	 1, hence ῡ′n,j 	 ῡn,j . For the case that κ(r′) is variant, we
adopt the approximation ῡ′n,j 	 κj · ῡn,j , where κj is the average κ(r′)
in the support of the j-th SWG basis function. Thus (15) can be
rewritten as

�i,j = ῡT
m,i · ¯̄Gm,n · ῡn,j · κj . (16)

Consequently, following the similar steps in [2], the Algorithm for
calculating b̄ = ¯̄Z · x̄, i.e., MLGFIM-Volume Loop is listed below.

Algorithm 1. MLGFIM-VL.

Step 0 Modify the value of x̄ by Diag[κ1, · · · , κi, · · · , κN ] · x̄. The
complexity is O(N).
Step 1 Call algorithm 1 in [2], but without calculating the term
for scalar potential, because in the problem of this paper, no
scalar potential is needed for building the MoM matrix. Note that
here the radial basis function interpolation with 35 Tartan grid
interpolation points is applied at all levels. The threshold for QR
compressing the Green’s function matrix is chosen to be 10−2.

The differences between MLGFIM-VL and the algorithm in [2]
are 1) the elements in ῡn,i of (16) is obtained by volume integration
instead of surface integration; 2) step 0 is added to consider the variant
dielectric contrast factor κ(r); 3) the number of interpolation points is
Kl = K = 35 at all levels so that the algorithm has a complexity of
O(N); that has been proved in [1]. Moreover, the QR factorization
technique used in [2] has also been used here for compressing the
Green’s function matrices ¯̄Gml,l;nl,l at level l, where l = 2, · · · , L.

3. NUMERICAL RESULTS

In this section, we calculate all the examples using GMRES iterative
solver. The inner loop of GMRES contains 200 matrix-vector
multiplications. The threshold is set to be 1×10−4. The matrix-vector
multiplication calculation is accelerated using MLGFIM-VL.

The first example is a rectangular straight Cu line (σ = 5.961 ×
107 S/m) with 5 microns by 30 microns by 1000 microns as shown in
Fig. 4(a). The calculated inductances of this straight line at 2 GHz
and 10 GHz are listed in Table 1. We use the solutions by Fast Henry
solver as the reference solution, because Fast Henry can give a fast and
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(a)                                            (b) 

Figure 4. (a) A rectangular straight line with 5 microns by 30 microns
by 1000 microns. (b) A 4.5 turns inductor. w = 30 microns, t = 3
microns, s = 20 microns, and R = 100 microns.

accurate result for quasi static problems with regular shapes such as
straight lines.

The second example is for the Cu spiral inductors (σ = 5.961 ×
107 S/m) that are often used in RF ICs or RF MEMs. The geometry
shape and size of this kind of inductors is shown in Fig. 4(b). The
width w, thickness t, space s, and inner radius R are 30, 3, 20, and
100 microns respectively. Table 1 lists the inductances calculated by
MLGFIM-VL for inductors with different turns. The results obtained
by FastHenry software are also listed for comparisons. While applying
FastHenry, we dissect the inductor into a lot of very small curved blocks
and model these curved blocks using rectangular blocks that are called
by FastHenry solver. We see that our results agree well with that of
FastHenry software with differences restricted in 5%.

The third example as shown in Fig. 5(a) is for the bumps used in IC
packages. Because of the curve feature of the spherical bump, it is not
convenient to use Fasthenry in modeling this structure. However, the
tetrahedron elements used in our method are very flexible for geometry
with complex shape. We investigate a Au bump (σ = 4.521×107 S/m)
at 10 GHz with the sizes R1, R2, R3, H1, H2, and H3 being 50, 30, 20,
40, 10, 10 microns, respectively. Fig. 5(b) shows the inductance results
calculated by our method with different number of meshed SWG bases.
We see that the result converges when the mesh density increases. The
difference between the value obtained using the smallest number of
SWG bases (10,563) and that obtained using the biggest number of
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Table 1. Inductances of the straight line and spiral inductors.

Examples Frequency
Inductance (nH)

MLGFIM-VL Fast Henry Difference (%)

Straight line (in Fig. 3)
2GHz 0.884541 0.884935 0.04

10GHz 0.881354 0.898938 1.95608

1.5 turns spiral inductor
13Hz 0.981343 0.994345 1.30759

13GHz 0.942563 0.966121 2.43841

2.5 turns spiral inductor
6.3Hz 2.56795 2.60564 1.44648

6.3GHz 2.46407 2.54221 3.07370

3.5 turns spiral inductor
4.4Hz 5.08489 5.21537 2.50184

4.4GHz 4.89556 5.10688 4.13795

4.5 turns spiral inductor
2.8Hz 8.81897 9.02001 2.22882

2.8GHz 8.50109 8.85870 4.03682
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Figure 5. (a) The inner view of a volume meshed Au bump. (b) The
inductance of this bump.

SWG bases (126,653) is only 1.4%. This confirms the validity and
accuracy of MLGFIM-VL.

The fourth example is the mutual inductances extractions among
the parallel interconnect buses in deep submicron ICs. The mutual
inductances will cause noise and delay effects on other neighbor
lines [7]. So, correctly predicting their values is very important
for the designers to work out remedy. Fig. 6(a) illustrates three
parallel Cu (σ = 5.961 × 107 S/m) buses. The sizes W , T , and
L are 0.13, 0.4, and 34.97 microns respectively. Fig. 6(b) shows
the mutual inductances among them versus the space between them.
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Table 2. Mutual inductances of the three parallel lines calculated by
MLGFIM-VL and fasthenry (UNIT: 10−11H).

Calculated by MLGFIM-VL  Calculated by  FastHenry solver  

S
(microns ) Self 

inductance

Between 
two

neighbor
buses

Between 
two apart 

buses

Self 
inductance

Between 
two

neighbor
buses

Between 
two apart 

buses

Difference
(%)

0.13 3.67954 3.12654 2.71350 3.81043 3.15633 2.74687 2.48040

0.39 3.67955 2.71347 2.25841 3.81043 2.74687 2.26466 2.60635

0.65 3.67955 2.44842 1.98861 3.81043 2.46294 1.98943 2.69154

0.91 3.67953 2.25841 1.79901 3.81044 2.26467 1.79739 2.77793

1.17 3.67952 2.10960 1.65357 3.81044 2.11621 1.65572 2.84900

1.43 3.67955 1.98866 1.53651 3.81044 1.98943 1.53393 2.90621

Table 2 lists the mutual inductance values calculated by our method
and FastHenry solver. We see that the differences are confined
in 3%. The difference is calculated by formula

∥∥ ¯̄LMLGFIM−V L −
¯̄LFASTHENRY

∥∥
F

/∥∥ ¯̄LFASTHENRY

∥∥
F
, where the subscript F denotes

the Frobenius Norm.

MLGFIM-VL. 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Space (microns)

1.5E-011

2E-011

2.5E-011

3E-011

3.5E-011

4E-011

In
d

u
ct

an
ce

(H
)

Betw een Two Apart Wire s
Betw een Two Neighbor Wires
Self Inductance

(a) (b) 

L

S W

T

Figure 6. (a) Three parallel interconnect buses in deep sub-micron
ICs. (b) Self and mutual inductances among the three parallel buses.

In Fig. 7, we plot the memory requirement and the CPU time
per matrix-vector multiplication in (9) for the spirals with 0.5, 1.5,
2.5, 3.5, and 4.4 turns and the Au bump with different number of
SWG basis functions. The predicted values for MoM method is also
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Figure 7. (a) The memory requirement versus the number of SWG
bases. (b) The CPU time used per matrix-vector multiplication versus
number of SWG bases.

draw for comparisons. Here 1 MB = 10242 Bytes. We calculate a
0.5 turn spiral inductor with 1153 SWG bases using MoM and record
the used CPU time in per matrix-vector multiplication. According to
the square law of the complexity of MoM, we can predict the CPU
time used per matrix-vector multiplication versus any number of SWG
basis functions. From Fig. 7(a), we see that using MLGFIM-VL can
significantly save the memory. From Fig. 7(b), we also see that the
time saving for bump example is less significant than that for the
inductors example. The main reason is that because the number
of cubes in the interaction list [1] of a 3D solid structure is always
63−33 = 189, while that for a 2D structure is 62−32 = 27, so the time
used in the interaction phase [2] for 3D solid cases, e.g., the bump,
should be about 7 times of that for 2D structures, e.g., the spiral
inductors. Nevertheless, in Fig. 7(b), we observe that for both cases,
the time used in MLGFIM-VL per matrix-vector multiplication should
be significantly less than that used in MoM. Following the increase of
the number of SWG basis functions, this significance will be more and
more drastic.

4. CONCLUSION

In this paper, we develop a fast integral equation method for extracting
the inductances in RF ICs, RF MEMs, IC packages, and deep
submicron ICs etc. This method combines Multilevel Green’s Function
Interpolation Method (MLGFIM) with the volume integral equation
discretized using Volume Loop (VL) basis functions. In it, instead
of using the filaments model, we use the conventional SWG basis
functions for this kind of basis functions is flexible for problems with
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complex geometries. We also use the shortest path finding algorithm to
find the source loop basis functions. The inductance extractions from
the straight line, the spiral inductors, the bump, and the parallel buses
in this paper demonstrate the validity and efficiency of MLGFIM-VL.
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