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Abstract—Monopole antennas are usually used for measurement of
the shielding effectiveness of metallic enclosures. This paper presents
an accurate numerical modeling for monopole antennas attached in
shielded enclosures with apertures. The electric field integral equation
(EFIE) is formulated for the induced currents on both the monopoles
and enclosure. The precorrected-FFT accelerated method of moments
(pFFT-MoM) is used to solve the integral equation and the incomplete
LU (ILU) preconditioner is applied to speed up the convergence of the
equation. Compared with existing methods, the model presented in
this paper considers the mutual coupling between the monopoles and
shielded enclosure. Therefore, it is a better approximation to the actual
measurement geometry.

1. INTRODUCTION

Metallic shielding is usually used to prevent electronic equipments from
electromagnetic interference. The shielding efficiency of a metallic
enclosure is characterized by its shielding effectiveness (SE) [1–3]. For
measurement of shielding effectiveness, small monopole antennas are
usually used to penetrate the walls of the metallic enclosure and the
voltages picked by the monopoles are measured. Shielding effective is
then defined as the ratio of the voltage picked up by the monopole
antenna without the presence of the enclosure to the voltage with the
presence of the enclosure. Various methods have been developed to
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determine the shielding effectiveness of metallic enclosures, such as
the finite difference time domain (FDTD) method [4, 5], the method
of moments (MoM) [6, 7] and the hybrid method [8]. Comparison with
experimental data shows that it is far from easy to get accurate results
and the memory requirements and computational complexity can be
quite high, particularly at higher and resonant frequencies. Among
the existing reference, most did not consider the monopole antenna.
Others only considered simple dipoles located at the centre or outside
the shielded enclosure. In these cases, the coupling between the dipole
and enclosure is very weak and thus can be ignored [7]. All these
simulation models are different from the actual measurement geometry,
therefore may result in obvious discrepancy between the simulated and
measured results.

In this paper, a model which is supposed to be a better
approximation to the actual measurement geometry will be presented.
A small monopole antenna is assumed to be attached on the internal
surface of the metallic enclosure. Apertures are located on the wall of
the enclosure for cooling purpose and cable connections. The mutual
coupling between the monopole and enclosure may be very complicated
and modify both the input impedance and induced current of the
monopole antenna. For accurate analysis of such a model, a full-wave
method is a good choice since it can fully consider the mutual coupling
effect. We use the electric field integral equation (EFIE) to solve this
problem. In the approach, the EFIE is set up on the surface of both
the metallic monopole and enclosure. Then the method of moments
(MoM) is used to solve the EFIE and the precorrected-FFT (pFFT)
method [9] is applied to reduce the memory requirement and accelerate
the matrix-vector products in the iterative solution of the equation.
The incomplete LU (ILU) preconditioner [10] is applied to further
improve the efficiency of the method by improving the convergence
rate of the system. The resultant method can accurately predict the
behaviour of the monopole antennas in the presence of the enclosure.
Therefore, the shielding effectiveness of the enclosure can be accurately
evaluated. The present method also enables the analysis of antennas
in electrically large and complex enclosures due to the use of the fast
algorithm.

2. SIMULATION MODEL AND FORMULATIONS

2.1. Simulation Model and the Integral Equation

Shielding effectiveness is usually measured around the internal surface
of the enclosure by means of small monopoles penetrating the walls
[11]. We use the model in Fig. 1 to simulate the measurement structure,
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Figure 1. The geometry of a monopole enclosed by a shielded box
with a slot.

a monopole antenna is attached in the perfectly-electrical-conducting
(PEC) box with slots. Introducing equivalent surface current JS ,
wire current JW and junction current JJ on the surface of the box,
monopole antenna and their junction respectively, we can obtain the
following integral equation:

Ei
tan = −Es

tan on SS and SW (1)

where SS and SW are the surfaces of the box and antennas,
respectively. The scattered field Es is the total contribution of JS ,JW

and JJ , which can be obtained from

ES(r) =
∑
α

(−jωAα(r) −∇Φα(r)) α = S, W, J (2)

where Aα(r) and Φα are the vector and scalar potential produced by
the current Jα. Definitions of the vector and scalar potentials can be
found in [12]. Introduction of the junction current JJ can model the
rapidly varying surface current near the connection point and account
for the continuity of electrical current from the monopole antenna to
the box.

To solve Eq. (1), the conducting surface and wire are divided into
triangular patches and linear segments, respectively. It should be noted
that in meshing the structures, the junction point should be a vertex of
the triangles in order to apply the attachment mode. Then the surface,
wire and junction current are expanded using the Rao-Wilton-Glisson
(RWG) basis function [13], triangular basis function [14] and junction
basis function [14], respectively,

Jα(r) =
Nα∑
n=1

Iα
n fα

n(r), α = S, W, J (3)
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where NS , NW and NJ are the numbers of unknowns on the
surface (box), wire (monopole antennas) and junctions, respectively.
Substituting (3) into (1), and using the Galerkin’s method, we obtain
a matrix equation in the following form


ZS,S ZS,W ZS,J

ZW,S ZW,W ZW,J

ZJ,S ZJ,W ZJ,J







IS

IW

IJ


 =




V S

V W

V J


 (4)

Elements of the sub-matrices Zβ,α (β, α = S, W, J) are given by

Zβ,α
mn = jω

∫
Sβ

m

fβ
m · Aα

mndβ −
∫

Sβ
m

Φα
mn∇s · fβ

mdβ (5)

where Aα
mn and Φα

mn are the contributions to A and Φ from a single
basis function fα

n. The right-hand-side vector V in Eq. (4) is the
excitation of the antenna-box system. For radiation mode, a 1 V-delta
voltage is assumed at the connection point of the antenna and box.
For receiving mode, V can be obtained by the reaction of the testing
function fβ

m and the incident field, i.e.,

Vβ =
∫

Sβ
m

fβ
m(r) · Ei(r)dr, β = S, W, J. (6)

2.2. The Precorrected-FFT Method

By solving Eq. (4), the unknown coefficients are obtained, from which
the shielding effectiveness of the shielded box can be calculated.
However, the coefficient matrix Z is a dense and complex valued
matrix, requiring O(N2) storage, where N (N = NS + NW + NJ) is
the number of unknowns. A direct solution to Eq. (4) requires O(N3)
operations and an iterative solution requires O(N iterN2) operations,
where N iter is the number of iterations required to satisfy a predefined
convergence criterion. Such requirements are computational expensive
and easily exceed the current capacity of a computer. To alleviate this
problem, we use the precorrected-FFT (pFFT) method to reduce the
memory requirement and speed up the matrix-vector products in the
iterations.

The pFFT method considers the near- and far-zone interactions
separately when evaluating a matrix-vector product, i.e.

Z · I = Znear · I + Zfar · I (7)

The near-zone interactions are computed directly and stored while the
far-zone interactions are calculated in an approximation way.
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First, a uniform grid is introduced to enclose the entire solution
domain, including the antennas and shielded box. Then, by matching
the scalar or vector potentials produced by the source distributions
(fα

n(r) and ∇ · fα
n(r) α = S, W, J) on the original irregular mesh and

that produced by the grid sources at some pre-selected test points, we
can construct the projection operators

W α =
[
P gt

]+
P α, α = S, W, J (8)

where P gt are the mappings between the grid sources and the test-
point potentials, and P α are the mappings between the actual source
distributions and the test-point potentials, respectively.

From the projection operators in Eq. (8), we can replace the
original source distributions on the irregular mesh by a set of
equivalent point sources on the uniform grid. Thus the relationship
between the potentials at the grid points and the grid sources is
in fact a convolution, which can be rapidly calculated by using the
discrete Fast Fourier Transform (FFT). Once the grid potentials are
obtained, the potentials on the original elements can be obtained via
interpolation. The transpose of the projection operators can be used
as the interpolation operators. Finally, the errors introduced into
the nearby interactions by the grid approximation should be removed.
Then the sub-matrix elements obtained by the pFFT method can be
represented by the following formula

Ẑ
β,α

= Z̃
β,α

+
(
Zβ,α − W βT

HW α
)

, α, β = S, W, J (9)

where H represents the convolution operators. The second term in the
right-hand side of Eq. (9) is the so-called precorrection operator. It is
required only when the distance between the basis function fα

n and the
testing function fβ

m is less than a predefined threshold, otherwise, it is
set to zero.

By using the above three sparse operators (projection, interpo-
lation and precorrection) and one global operator (convolution), the
matrix-vector multiply is sped up significantly and the memory require-
ment is also reduced. Detailed description about the implementation
and efficiency of the pFFT method can refer to [9].

2.3. Incomplete LU Preconditioner

As we know, the EFIE usually converges slow, particularly at or around
resonance frequencies. Since the CPU time is proportional to the
required iteration number N iter, preconditioning techniques should
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be used to accelerate the convergence rate of the iterative solution
[10, 15, 16]. In this paper, an incomplete LU preconditioner (ILU) with
a dual dropping strategy [10] is used.

By using the ILU preconditioning, we construct a preconditioner
[Ẑ]−1 from the incomplete LU factorization of the near-interaction part
of the matrix Z and apply the preconditioner [Ẑ]−1 to Eq. (4). That
is [

Ẑ
]−1

ZI =
[
Ẑ

]−1
V (10)

Now, in stead of solving the linear systems in (4), we need to solve the
equivalent linear systems in (10), which usually converges much faster
than the former.

The dual dropping strategy of the ILUT is implemented using the
two parameters τ and p. The parameter τ means that small entries
with respect to τ and relative to a certain norm of the current row are
dropped and parameter p means that the largest p entries are kept and
the others are again dropped. By judicious choice of the parameters
τ and p, we are able to construct an ILU preconditioner that is both
effective and memory-saving. The efficiency of the ILU preconditioner
will be shown in the next section.

3. EXAMPLES AND DISCUSSIONS

In the first example, we consider a monopole antenna mounted inside
a rectangular shielded box with a rectangular slot at the centre of
its front face, as shown in Fig. 1. The dimension of the box is
290 mm×190 mm×130 mm and the slot size is 150 mm×2 mm. The
monopole antenna with a length of 65 mm is located at the centre of
the top face of the box and terminated in a 50Ω load. The shielded
box is normally illuminated by an external plane wave impinging on
the surface of the enclosure (x-z plane) with the electric field polarized
along the z-axis. The shielding effectiveness is defined as follows by
the voltages picked up by the monopole antenna instead of the electric
field:

SE = 20 log10

|Vi|
|Vt|

(11)

where Vi and Vt are the voltage picked up by the monopole antenna
without and with the shielded box, respectively. For the case
without the shielded box, only the monopole antenna and top face
are considered.

In the calculation, the slotted box is discretized into 1352 triangles
at the lower frequency end (0.5 GHz–1.5 GHz) and 4968 triangles at
the higher frequency end (1.5 GHz–3 GHz). The monopole is divided
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Figure 2. The input impedance of the monopole with and without
(the inset) the shielded box.

into 8 segments. The numbers of unknowns for the lower and higher
frequency end are 2026 and 7442, respectively. Fig. 2 shows the input
impedance obtained from the present method over 0.5 GHz to 3 GHz
(the frequency step is 0.01 GHz). For comparison, the input impedance
without the shielded box is also shown in the inset of Fig. 2. It can
be seen that the curves without the shielded box are very smooth. In
contrast, the curves with the shielded box have a number of sharp
peaks. These sharp peaks correspond to resonance frequencies of the
shielded box.

Fig. 3 shows the current flowing through the junction point. From
the currents, the voltages picked up the monopole antenna and the
shielding effectiveness can be in turn calculated. Fig. 4 shows the
shielding effectiveness obtained from the present method and FDTD
method. Good agreement is observed, verifying the present method.
In Fig. 4, the first wide valley around 1GHz is the resonance frequency
of the slot. The first resonance frequency of the shielded box (TE110

mode) near 0.94 GHz is suppressed by the resonance frequency of the
slot and thus is not obvious. Other resonance frequencies (TE111,
TE120 and TE121 etc.) of the shielded box can be clearly observed
in Fig. 4.

Finally, the shielding effectiveness of the same shielded box with
slot of different sizes is calculated and shown in Fig. 5. The slots are of
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Figure 3. The magnitude of the electric current flowing through the
junction point of the monopole with and without the shielded box.
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Figure 4. The shielding effectiveness of the shielded box.
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Figure 5. The shielding effectiveness of the shielded box with slots of
different sizes.
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Figure 6. Convergence comparison of the system with and without
ILU preconditioner.



260 Nie et al.

three different sizes: 150 mm×2 mm, 80 mm×2 mm and 15 mm×2 mm.
It is observed that the shielding effectiveness decreases as the slot
size increases, especially at frequencies below the first resonance
frequency. This phenomenon coincides with the physical principle
(our expectation). Further, for shorter slots (80 mm and 15 mm), the
resonance frequencies of the slots shift higher and is away from the first
resonance frequency of the box (TE110 mode). Therefore, the TE110

mode can be obviously observed from the curves for the two shorter
slots.

To show the efficiency of the ILU preconditioner, Fig. 6 shows the
convergence history of the system with and without preconditioner.
It is seen that by using the ILU preconditioner, convergence can be
achieved very fast. A relative residue of 10−3 can be achieved after
only 39 iterations. However, if no preconditioner, the convergence is
very slow. It takes about 420 iterations to achieve the same relative
residue.

4. CONCLUSION

A model with better approximation to the actual measurement
geometry of shielding effectiveness is presented in this paper. For
accurate analysis of this model, the electric field integral equation
is applied and the preconditioned-FFT method is used to reduce
the memory requirement and CPU time. The incomplete LU
(ILU) preconditioner is applied to further improve the efficiency of
the method. Numerical results show that the present model and
method are efficient in predicting the shielding effectiveness of metallic
enclosures.
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