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Abstract—Desired far-field radiation patterns of 5 × 11 conformal
antenna array are synthesized using a hybrid genetic algorithm (HGA),
which combines the simplified quadratic interpolation (SQI) method
and the real-coded genetic algorithm (RCGA). This hybrid genetic
algorithm is shown to outperform standard genetic algorithm (GA)
when used to synthesize amplitude weights of the elements to satisfy
specified deep notches, nulls and average sidelobe level constraints. The
HGA procedure appears to be a high effective means to compensate
the mutual coupling effects on the individual element patterns for the
conformal antenna array.

1. INTRODUCTION

Pattern synthesis is known as the process of choosing the parameters
of an antenna array to produce desired radiation characteristics. There
are a wide variety of techniques that have been developed for the
synthesis of linear and planar arrays [1–6]. GA is used to thin a
large linear array of uniformly excited isotropic elements to yield
SLL equal to or below a fixed level, while the percentage of thinning
is equal to or above a fixed value [7]. Some more complicated
problems of synthesizing radiation patterns of conformal antenna
array have also been considered. The least mean square error of
the constrained least-squares optimization method is introduced to
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synthesize the large conformal antenna arrays with constraints for the
element excitation amplitudes and a phase synthesis with predefined
amplitudes [8]. [9] has combined the projection method with mutual
coupling compensation to obtain a sidelobe constraint pattern of the
conformal antenna array especially in digital beam forming systems.
A simulated annealing technique developed for circular arc arrays
is presented as a method for synthesizing the radiation pattern for
three-dimensional (3-D) conformal arrays in [10]. [11] describes the
application of Zitler’s Strength Pareto Evolutionary Algorithm II
(SPEA2) to the optimization of the complex excitations for a 225
element conformal antenna array. A new method for optimizing the
partitioning of conformal arrays into subarrays is also presented in [11].
Boeringer et al. demonstrate the synthesis of amplitude-only, phase-
only and complex weighting for a specified far-field sidelobe envelope by
the implement of a real-valued genetic algorithm that simultaneously
adapts several parameters during the optimization process [12].

Compared with standard GA, this paper show the application of
hybrid genetic algorithm (HGA) [13] to optimize the radiation pattern
in the main operational plane of multilayer patches antennas mounted
on a finite-length dielectric circular cylinder. For accurate simulation,
coupling effects on the individual patterns of the array elements have
been considered. It is shown that the optimal set of element excitation
amplitudes can be obtained by HGA effectively for synthesizing the
notched radiation patterns with given goal notch depth, nulls and
sidelobe level.

2. CONFORMAL ANTENNA ARRAY THEORY

We consider an element of Amn(θmn, φmn) mounted on a finite length
dielectric-coated cylindrical platform, such as Fig. 1.

The far-field radiation pattern produced by M×N elements placed
on the cylinder can be expressed as

F (θ, φ) =
M∑

m=1

N∑
n=1

Imnfmn(θ, φ) exp[j(kRmn cos γmn + ϕmn)] (1)

where Imn is the element excitation current amplitude, ϕmn is the
excitation current phase, and fmn(θ, φ) is the individual element
pattern for Amn. Rmn is the distance between Amn and the coordinate
origin o. γmn is the angle between reference direction vector �r and
element position vector �rmn, and k is the free-space wavenumber.

In Fig. 1, the other relative parameters in the system of conformal
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Figure 1. Illustration of element mounted on a finite length dielectric-
coated cylindrical platform.

array can be expressed as follow

r̂ = x̂ sin θ cosφ + ŷ sin θ sinφ + ẑ cos θ (2)

r̂mn = x̂ sin θmn cosφmn + ŷ sin θmn sinφmn + ẑ cos θmn (3)

cos γmn = r̂ · r̂mn

= sin θ sin θmn cosφ cosφmn + sin θ sin θmn sinφ sinφmn

+ cos θ cos θmn

= cos2
(
φ− φmn

2

)
cos(θ − θmn)

+ sin2
(
φ− φmn

2

)
cos(θ + θmn) (4)

�rmn = x̂Amn(x) + ŷAmn(y) + ẑAmn(z) (5)
Rmn cos γmn = �rmn · r̂

= Amn(x) sin θ cosφ + Amn(y) sin θ sinφ
+Amn(z) cos θ (6)

ϕmn = −k[Amn(x) sin θ0 cosφ0+Amn(y) sin θ0 sinφ0+Amn(z) cos θ0 (7)

where (θ0, φ0) is the desired steering angle.
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Figure 2. top-view of conformal array.

Fig. 2 shows the top-view of the conformal array, where the x
coordinate of element Amn(x, y, z) can be written as

Amn(x) = R0 cosφmn (8)

y and z coordinates of Amn(x, y, z) are expressed as follow

Amn(y) = R0 sinφmn (9)

Amn(z) =
(M + 1 − 2m) · d

2
(10)

Azimuthal angle

φmn =
(2n− 1 −N) · ∆φ

2
(11)

∆φ represents the azimuthal angle difference between adjacent
elements in the horizontal plane, d is the distance of vertical adjacent
elements.

Considering above conditions, formula (1) is derived as

F (θ, φ) =
M∑

m=1

N∑
n=1

Imnfmn(θ, φ) exp{j[k(Amn(x) sin θ cosφ

+Amn(y) sin θ sinφ) + Amn(z) cos θ) + ϕmn]}
(12)

3. HYBRID GENETIC ALGORITHM

Hybrid genetic algorithm used in this paper combines the simplified
quadratic interpolation (SQI) method and the real-coded genetic
algorithm (RCGA) [13]. In RCGA, all the constraints are incorporated
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into the fitness function by using the exact penalty method. The
combination of an arithmetical crossover and a heuristic crossover is
taken as the crossover operator. The mutation operator enhances the
random search ability of the algorithm. We also adopt the ranking
selection and introduce some foreign individuals into the population
in order to maintain its diversity. The SQI method is used in [14] to
conduct global searches. However, we integrate the SQI method into
RCGA to improve its local search ability, and to make the algorithm
escape from the local optima.

3.1. A Real-coded Genetic Algorithm

3.1.1. Generation of Initial Population

Vector x = [x1, x2, · · · , xn]� is used to express an individual, which
represents a solution of problem.

We generate at random pop uniformly distributed initial
individuals xi(0), i = 1, 2, · · · , pop, where pop denotes the population
size.

3.1.2. Fitness Function

Since the problem under discussion is a minimization problem, for
convenience, we stipulate that a fitness function fit(x) should satisfy
the following criterion: the smaller the fitness value, the better the
solution. Normal format of fitness function could be written as

Fitness = ω ·

∣∣∣∣∣∣20 · log


 1
Xfit

∑
x∈Xfit

f(x)


 − goal

∣∣∣∣∣∣
2

(13)

where ω represents weight function, Xfit is given optimization domain,
and goal expressed as specified target.

3.1.3. Crossover Operator

Let pc be the crossover probability. Randomly select two parents with
probability pc: x1 = [x1

1, x
1
2, · · · , x1

n]� and x2 = [x2
1, x

2
2, · · · , x2

n]�, and
generate the offspring y = [y1, y2, · · · , yn]�according to

y =

{
x1 + Γ(x1 − x2), if fit(x1) ≤ fit(x2)

x2 + Γ(x2 − x1), otherwise
(14)

where Γ = diag(γ1, · · · , γn), γi ∈ (−1, 1), γi �= 0, i = 1, · · · , n.
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3.1.4. Mutation Operator

Let pm be the mutation probability, and let the best individual, an
individual with minimal fitness value among all individuals generated
till now, be best = [best1, best2, · · · , bestn]�.

For every offspring y = [y1, · · · , yn]� such that ‖best − y‖ ≥ ε1

(ε1 = 10−4), randomly generate a number rn ∈ [0, 1]. If rn < pm, then
generate offspring z = [z1, · · · , zn]� by

z = best + V · |c|, (15)

where V = diag(best1 − y1, · · · , bestn − yn), c ∈ Rn is a random
vector obeying an n-dimensional standard normal distribution, i.e.,
c ∼ [N(0, 1), · · · , N(0, 1)]�.

For every offspring y = [y1, · · · , yn]� such that ‖best − y‖ < ε1

(ε1 = 10−4), we also randomly generate a number rn ∈ [0, 1]. If
rn < pm, then generate offspring z = [z1, · · · , zn]� by

z = best + v, (16)

where v ∼ N(0, σ2) = [N(0, σ2
1), · · · , N(0, σ2

n)]�, an n-dimensional
normal distribution with mean value 0 = [0, · · · , 0]� and deviation
σ2 = [σ2

1, · · · , σ2
n]�.

3.1.5. Selection Operator

In order to maintain the diversity of population and avoid being
trapped into local optima, we adopt the following selection strategy.

First we rank all the individuals ascendingly, consisting of those
in the current population and the offspring generated by the crossover
and mutation operators, according to their fitness values. Then, the
best pop−Nn individuals are selected, and we randomly generate Nn

individuals (using the method for generating the initial population).
Thus, these pop individuals constitute the next population. In
addition, we retain the best individual of every generation.

3.1.6. Stop Criterion

If the algorithm is executed to the maximal number of generations
MaxG, then stop. The best solution we found in the last population
is then taken as the approximate global optimal solution.
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3.2. A Simplified Quadratic Interpolation Method

As a local search operator, the three-point quadratic interpolation
method is integrated into RCGA in order to improve its local search
ability and avoid its premature convergence.

Denote three individuals by xa = [xa
1, · · · , xa

n]�, xb =
[xb

1, · · · , xb
n]�, xc = [xc

1, · · · , xc
n]�, and calculate their fitness values

fa = fit(xa), fb = fit(xb), fc = fit(xc). Suppose that fa > fb and
fc > fb, then the approximate minimal point x̄ = [x̄1, · · · , x̄n]� derived
from the three-point quadratic interpolation is expressed as follows:

x̄i =
1
2

{
[(xb

i)
2 − (xc

i )
2]fa + [(xc

i )
2 − (xa

i )
2]fb + [(xa

i )
2 − (xb

i)
2]fc

(xb
i − xc

i )fa + (xc
i − xa

i )fb + (xa
i − xb

i)fc

}
,

(17)
i = 1, · · · , n.

As is known, GA has better global search ability, while the
quadratic interpolation method has powerful local search ability. Thus
we integrate the quadratic interpolation method into the RCGA to
form HGA, which improves the efficiency of the algorithm.

Now we can describe HGA procedure as follows.

Data. Parameter setting
Choose population size pop, crossover probability pc, mutation
probability pm, maximal number of generations MaxG, and a
suitable integer Nn such that Nn < pop.

Step 0. Initialization
Set kk = 0, generate randomly the initial population set
P (kk) = {x1(kk), · · · , xpop(kk)} and compute the fitness values
fit(xi(kk)), i = 1, 2, · · · , pop.

Step 1. Crossover
Step 1.1. Generate at random a number r1 ∈ [0, 1] and two integers

r2, r3 ∈ [1, pop], r2 �= r3. If r1 < pc, then take xr2(kk) and xr3(kk)
as two parents, execute crossover operator (14) and produce their
offspring y(kk).

Step 1.2. Repeat Step 1.1 pop times, produce popc offspring
individuals, which form a trial population set denoted by
Pc(kk) = {y1(kk), · · · , ypopc(kk)}, and compute their fitness values
fit(yi(kk)), i = 1, 2, · · · , popc.

Step 2. Mutation
Step 2.1. For i = 1, · · · , popc, if ‖best − yi(kk)‖ ≥ ε1 (ε1 = 10−4),

then generate randomly a number rn ∈ [0, 1]. If rn < pm,
then generate offspring z(kk) by using Equ. (15). Otherwise, also
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generate randomly a number rn ∈ [0, 1]. If rn < pm, then generate
offspring z(kk) by using Equ. (16).

Step 2.2. By using Step 2.1, produce popm offspring indi-
viduals, which form a trial population set denoted by
Pm(kk) = {z1(kk), · · · , zpopm(kk)}, and compute the fitness values
fit(zi(kk)), i = 1, 2, · · · , popm.

Step 3. Local search
Step 3.1. Compare the fitness values of all the individuals, including

those in the current population and all the offspring generated
by the crossover and mutation operators, order ascendingly and
relabel them.

Step 3.2. The three best individuals are chosen, denoted by xb,xa,and
xc, respectively, such that fb = fit(xb) ≤ fa = fit(xa) ≤ fc =
fit(xc).

Step 3.3. For some i ∈ {1, 2, · · · , n}, if(xb
i −xc

i )fa+(xc
i −xa

i )fb+(xa
i −

xb
i)fc < ε2 (ε2 = 10−5), then let x̄ = xb, and fit(x̄) = fb, go to

Step 3.5; Otherwise, go to Step 3.4.
Step 3.4. Calculate x̄ by using Equ. (17), and then the fitness value

fit(x̄).
Step 3.5. If fit(x̄) < fb, then replace the worst solution in current

population with x̄; Otherwise, replace the worst solution in current
population with xb.

Step 4. Selection
According to the selection strategy, select pop individuals to
constitute the next population, and retain the best individual.

Step 5. If the stopping criterion is met, then stop, and record the
best individual in the last population as the approximate global
optimal solution of problem. Otherwise, set kk = kk + 1, and go
to Step 1.

Flowchart of HGA is shown in Fig. 3.

4. MODEL CONFIGURATION

The hybrid genetic algorithm presented in the previous section is
applied to the case of multilayer patches antenna array mounted on
a finite length dielectric-coated circular cylinder. The cylinder under
consideration has a length of 7λ and a radius of 2.5λ, λ standing for
the operating wavelength.

The multilayer patches antenna used in this phased array is
illustrated in Fig. 4. Two perfect conductive radiation patches are
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Figure 3. Flowchart of hybrid genetic algorithm (HGA).

Figure 4. Element illustration of multilayer patches antenna.
(a) top view, (b) 3D view.

embedded into the dielectric, and the ground plane is mounted on the
substrate of antenna.

Elements compose an array of 5 × 11 in the dimensions of ∆φ =
π
18(rad) and d = λ

2 , shown in Fig. 5. XY -plane is discussed as the main
operational plane.
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Figure 5. Configuration of 5 × 11 conformal array.
(a) denoted elements in the array, (b) simulated model of array.

Figure 6. Comparison between active element patterns and isolated
element pattern. (a) active element pattern of A36 and isolated element
pattern. (b) active element patterns of A11, A56 and isolated element
pattern.

We first seek to determine the effects of mutual coupling between
elements in the antenna array. In Fig. 5, element placed at the fringe
of array is denoted as A11, the center element of array is marked as
A36, and A56 is placed in the midst of lowest row.

Active element radiation pattern is the pattern taken with a
feed at the target element in the array, and with all other elements
terminated in matched loads. Fig. 6 compares the active radiation
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patterns of elements A11, A36 and A56 with the pattern of a single
antenna in the case of being isolated.

As expected, isolated element pattern and the active pattern of
A36 are symmetric, but A36 has the relatively large backlobe due to the
surface creeping wave. Fig. 6 (b) demonstrates that the given positions
of A11 and A56 induce the unbalanced coupling effects on generating
the contorted active element patterns. All the active element patterns
will be imported into the formula (12), independently.

In particular, the HGA selection process in this paper will be used
to choose the optimal excitation amplitude parameter for each of the
elements, while maintaining a uniform phase distribution.

For generating a notched far-field pattern to restrain the
interference coming from the special directions, the fitness function
is defined as follow

Fitness = ω1 ·

∣∣∣∣∣∣20 · log


 1
φSLL

∑
φ∈φSLL

F (θ0, φ)


 − SLL

∣∣∣∣∣∣
2

+ω2 ·

∣∣∣∣∣∣20 · log


 1
φNULL

∑
φ∈φNULL

F (θ0, φ)


 −NULL

∣∣∣∣∣∣
2

+ω3 ·

∣∣∣∣∣∣20 · log


 1
φNULL0

∑
φ∈φNULL0

F (θ0, φ)


 −NULL0

∣∣∣∣∣∣
2

(18)
where F (θ0, φ) is the far-field values calculated from (12), θ0 = 90◦
points the operational plane to the XY -plane, and ω1, ω2, ω3 stand
for the weight coefficients in the fitness function. SLL, NULL and
NULL0 represent given sidelobe level, goal notch depth and nulls
depth, respectively.

5. OPTIMIZATION RESULTS

In the case of above antennas configuration and fitness function, we
have synthesized two required notched patterns.

During the simulations, we adopted the following parameter suite:
• Population size: pop = 150;
• Crossover probability: pc = 0.75;
• Mutation probability: pm = 0.15;
• Maximum number of generations: MaxG = 7000.

When goal parameters SLL = 20 (dB), NULL = 30 (dB),
NULL0 = 50 (dB), and notches domains are specified for pattern I,
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ω1, ω2, ω3 are given values of 0.32, 0.50 and 0.18 in the optimization,
individually.

The optimized amplitudes of elements in the conformal antenna
array are shown in the Table 1, and optimized radiation pattern I of
array is demonstrated in Fig. 7.

Table 1. Optimized amplitudes of elements in the conformal array for
pattern I.

Row1 Row2 Row3 Row4 Row5

Column1 0.19893 0.28903 0.19634 0.30904 0.08315

Column2 0.2575 0.09603 0.29119 0.33146 0.26041

Column3 0.40702 0.69456 0.52570 0.67889 0.41017

Column4 0.69623 0.30242 0.64722 0.68869 0.50183

Column5 0.58224 0.30144 0.82765 0.56972 0.69997

Column6 0.37376 0.77449 0.85130 0.48461 0.39433

Column7 0.80030 0.69910 0.57073 0.53376 0.29530

Column8 0.79873 0.47374 0.31880 0.48160 0.78448

Column9 0.80478 0.77162 0.28498 0.23498 0.51974

Column10 0.09357 0.39085 0.23327 0.18269 0.20420

Column11 0.28557 0.09585 0.15827 0.40257 0.20615

Two deep notches, with the depth of 30 dB, are synthesized at
the given angle domains of −48 ∼ −32 deg and 29 ∼ 46 deg in the
azimuthal plane. Angles at −46 deg, −34 deg, 32 deg and 44 deg have
the specified nulls, with null depth below −50 dB. HGA also gives the
−20 dB average sidelobe level for 5 × 11 conformal array.

The pattern obtained from normal Chebyshev amplitude
distribution with SLL = 20 (dB) is also illustrated in Fig. 7. It is
evident that normal Chebyshev amplitude distribution is no longer
suitable to control the sidelobe level of conformal antenna array
which has large curvature. Standard GA gets the similar optimized
results, but not very ideal in controlling the sidelobe levels. Fig. 8
shows the converging line of HGA and GA, which demonstrates
HGA procedure possesses the dominant speed and precision in the
optimization compared with standard GA.

When changing notches angles and values of ω1, ω2, ω3 to
0.26, 0.52, 0.22 respectively, we get radiation pattern II required in
application which has notch in a large-domain in azimuthal plane
shown in Fig. 9 excited by amplitude distribution in Table 2.
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Figure 7. Notched radiation pattern I of conformal antenna array
optimized by HGA.

Figure 8. Comparison of iteration procedure between HGA and GA
for pattern I.

In the comparison of large-domain notched pattern II between
HGA and GA, the specified nulls at −33 deg and 45 deg are excursive
with insufficient null depth in GA results. Fig. 10 demonstrates
HGA possessing the steady optimization appearance contrasted with
standard GA.
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Table 2. Optimized amplitudes distribution of elements for generating
notched pattern II.

Row1 Row2 Row3 Row4 Row5

Column1 0.25994 0.067124 0.10036 0.33271 0.25637

Column2 0.30942 0.383250 0.12255 0.20253 0.10859

Column3 0.47757 0.735610 0.10384 0.31139 0.63008

Column4 0.71748 0.713860 0.30733 0.61421 0.97799

Column5 0.77083 0.254670 0.88380 0.68585 0.82878

Column6 0.76610 0.496740 0.98742 0.51862 0.83940

Column7 0.81694 0.804140 0.58378 0.75668 0.73385

Column8 0.97923 0.669310 0.76730 0.37445 0.79605

Column9 0.56448 0.645740 0.63780 0.29529 0.44072

Column10 0.3645 0.276990 0.35873 0.38221 0.40434

Column11 0.32282 0.25406 0.25488 0.42106 0.18754

Figure 9. Notched radiation pattern II for conformal array optimized
by HGA.
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Figure 10. Contrast of iteration procedure for notched pattern II
between HGA and GA.

6. CONCLUSION

This paper has demonstrated the application of the proposed hybrid
genetic algorithm (HGA) to synthesize notched radiation pattern for
a 5 × 11 conformal antenna array composed of multilayer patches
antennas. Compared with standard GA, we find HGA could yield the
optimal set of excitation current amplitudes in the precision accelerated
converging process. Simultaneously, the effects of the mutual coupling
on the radiation patterns can be compensated for using HGA procedure
efficiently.
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