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Abstract—In this paper we have investigated optical pulse propa-
gation in a dense dispersion managed (DM) optical communication
system operating at a speed of 100 Gb/s and more taking into account
of the effects of third order dispersion, intra-pulse Raman scattering
and self steepening. Using perturbed variational formulation, we have
obtained several ordinary differential equations for various pulse pa-
rameters. These equations have been solved numerically to identify
launching criteria in the first DM cell of the system. Full numerical
simulation of the nonlinear Schrédinger equation has been employed to
identify effects of higher order terms on pulse propagation and to in-
vestigate the intra-pulse interaction. The roles played by these higher
order linear and nonlinear effects have been identified. It has been
found that the shift of the pulse centre due to intra-pulse Raman scat-
tering increases with the increase in the distance of propagation and
average dispersion. We have noticed that for higher value of average
dispersion pulses travel less distance before collision than for lower
average dispersion.

1. INTRODUCTION

Dispersion managed (DM) solitons have shown great opportunity in
long distance high speed optical fiber communication systems because
of their superb characteristics which are not achievable in conventional
soliton based systems [1-18]. In a dispersion-managed system, fiber
dispersion varies alternately between anomalous and normal values.
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This variation is maintained periodically and the average dispersion
over a period could be positive, negative or even zero [3, 5, 8]. Unlike in
the constant dispersion system where the pulse propagates maintaining
its shape unchanged, in the dispersion managed system the pulse width
oscillates periodically and the shape of the pulse ranges from hyperbolic
secant to Gaussian to flat top, depending on the strength of the
dispersion management [4, 16]. The DM solitons have many advantages
like enhanced signal to noise ratio, reduced Gordon-Haus timing jitter
and the possibility of suppression of the phase matched four wave
mixing processes which arises in the wavelength division multiplexing
systems. The last factor could be achieved with considerable success
by allowing large local dispersion [3,15].

However, at very high transmission rate, where short pulses are
required, the performance of the conventional DM soliton systems is
even worse than the conventional soliton systems. In a conventional
DM soliton system, where the DM period is either same as or longer
than the amplifier spacing, the requirement of short pulses for high
bit rate resulting in very strong dispersion management i.e., very
large value of map strength due to large local dispersion. For such
cases, associated increase in the pulse energy and breathing within
one dispersion period lead to enhanced soliton interaction. On the
other hand, short pulses in a conventional DM soliton system can be
supported by keeping the map strength low enough. In fact, map
strength can be made low only by reducing the magnitude of fiber
dispersion, particularly, for desired low value of map strength, local
dispersion approaches average dispersion. This arrangement on the
other hand makes the map less effective in reducing four wave mixing
impairments. Thus, to support DM solitons at a single channel bit
rate higher than 60 Gb/s or more, an alternate arrangement is to use
a short-period dispersion map (SPDM), where more than one DM cell
of length L is fitted within one amplifier spacing L, i.e., L << L.
In such dispersion maps the lengths of alternate dispersion sections
are significantly reduced and can be chosen to keep pulse breathing
and interactions small while keeping the local dispersion high enough
to suppress four wave mixing impairments [19-21]. Such a scheme is
also known as densely dispersion managed systems (DDMS). At high
transmission rate, for example at 100 Gb/s and beyond the required
pulse width (FWHM) is of the order of only a few picoseconds or
less. For such cases, intrapulse Raman scattering (IRS), third order
dispersion and self steeping effects can become very appreciable. In
an earlier publication [22], pulse propagation incorporating stimulated
Raman scattering (SRS) and third order dispersion (TOD) has been
investigated. In this investigation collective variable theory (CV)
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appropriate to pulse propagation in dispersion managed optical fiber
link was developed. Above study was mainly confined to analyse
the ability of CV treatments to accurately predict the effect of pulse
interaction in wavelength division multiplexed (WDM) systems. This
study was not directed to optimise the dispersion map so as to reduce
the effects SRS, TOD, self steepening (ST) and cross phase modulation
(XPM). However, in any DM based soliton system, the map strength
parameter S is extremely important, which can be optimised to get
better transmission performance. This will be undertaken in the
present investigation. In the present investigation we have deliberately
kept the value of S at 1.65 to get maximum transmission performance.

Therefore, in the present communication, we investigate the data
transmission at 100 Gb/s and higher rate over more than 3000km
in a DM system with SPDM. For compensating fiber loss most
experimental systems employ lumped amplification by placing fiber
amplifier periodically along the transmission line. In order to avoid
large peak power variation, which is inherent in lumped amplification
scheme, we introduce distributed amplification using a bidirectional
pumping scheme. The arrangement of the paper is as follows. In
Section 2 we have developed the mathematical model, which is based on
modified nonlinear Schrodinger equation. We have employed perturbed
variational method to obtain a set of ordinary differential equations
(ODE). Using periodic boundary conditions these ODE’s have been
solved in section 3 to find out the launching criteria of input pulses
in the DDMS. In this section we have employed split step Fourier
method (SSFM) to undertake full numerical simulation of the modified
nonlinear Schrodinger equation. Main results have been highlighted in
this section. A brief conclusion has been added in Section 4.

2. THE MODEL

The dynamics of optical pulses in a dispersion managed optical
communication system is governed by the modified nonlinear
Schrodinger equation (MNLSE) [23]:
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where F is the slowing varying envelop of the soliton, ¢ is retarded time,
(2 is varying group velocity dispersion, s is the third order dispersion
which is assumed to be constant along fiber sections, wq is the central
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frequency, a accounts for the fiber loss due to absorption which is also
assumed to be constant along the fiber, v is the nonlinear coefficient
responsible for self phase modulation (SPM), I'p is the stimulated
Raman scattering coefficient. The distributed amplification of solitons
is included through the gain g(z).

Using following normalization d(z) = —’%%—QL, E = VPwu, T =

0
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g(z)L, o/ = «L, where L is length of the dispersion map in km,

Ty is (1/e) width of the optical soliton in ps and Py is an arbitrary
characteristic power, equation (1) can be rewritten as

Ou d%u 9 - 9u
57 + d(Z)W + Jul|*u — g g
: 2 2
— () - o (@) 00 )
Z
l9'(z)—a/]dz"
Using the transformation u = A\/G(Z), with G(Z) = e° is
the cumulative net gain from 0 to Z, equation (2) is now recasted as,
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We consider a symmetric dispersion map as shown in Figure 1.
The fiber dispersion is the sum of a locally varying part and an average
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Figure 1. Schematics of a short period dispersion map with
distributed amplification and bidirectional pumping.
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dispersion < d > and is given by
dqi+<d> if 0<Z<L/4
dz)=| dot <d> if L/A<Z<3L/4 | (4)
di+<d> if 3L/A<Z<L

where the normalized locally varying and the average dispersions are
given by

()
L <Bo>L di+ds
J 2 <@ T 2 (5)

The strength S of the dispersion map [7] is defined as

ALy — 8P L,

S =
TI%WHM

; (6)

where Tryw gy is the full width at half maximum of the soliton. In
order to solve Eq. (3) we note that the self steepening and Raman
effects are small enough to support stable DM solitons, and since
these terms are small the right hand side of Eq. (3) can be treated
as perturbation. In absence of the right hand side, Eq. (3) can be
solved analytically using variational formulation [24]. This procedure
has been widely used in nonlinear optics because of its simplicity
and ability to predict fairly good results [23-27]. In order to solve
unperturbed equation (3), we note that it can be solved using variation
of the Lagrangian density I', such that

5 7 7 TdrdZ =0 (7)

-0 =00
where the Lagrangian density I' is given as [27]
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The unperturbed Schrodinger equation can be obtained by means of
the functional derivative of I with respect to A, i.e.,
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The perturbed nonlinear Schrodinger equation i.e., the MNLSE as
given by Eq. (3) can be easily recovered from the following relationship:

ST(A, A*)
SA*

In order to analytically estimate the periodic variation of pulse
parameters in the dispersion managed system, it is convenient to
postulate a simple Gaussian ansatz

= iR[A, A"] (10)
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where Ey is the normalised energy of the pulse, T is the pulse
width, ¢, is the position of pulse centre, C' is the chirp, € is the
nonlinear frequency shift and ¢ is the phase of the pulse. The
peak amplitude p(Z) of the pulse may be defined as p(Z) =

exp

fT( i We now evaluate a finite dimensional reduced Lagrangian

L (T, tp, C, 8, 9, %, %, %, %, %) such that the evolution equations
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of pulse parameters are obtainable from § [ LdZ = 0, where the
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reduced Lagrangian L is given by
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Now the dynamical equations of different pulse parameters can be
easily obtained using Euler Lagrange equation

d (0L oL
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where r; = T,C,t,,§) and ¢. At this stage perturbed variational
procedure may be introduced to solve equation (3) with small but finite
value of R. Since the MNLSE contains perturbation terms, therefore
the modified Euler Lagrange equation can be written as [26]
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By inserting the value of L from Eq. (12) in Eq. (14) we obtain a
set, of first order ordinary differential equations obeyed by pulse width
parameters, which are as follows:
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Additionally, the pulse amplitude p(Z) and pulse width T" are related
to normalized pulse energy Fy through Fy = /7p?T, which is basically
the energy conservation law. The solutions of equations (15)—(18) are
required for finding the input pulse parameters T" and C which ensure
periodic pulse propagation in the DM system.

3. NUMERICAL EXPERIMENT AND RESULTS

In the present investigation, we consider the case where a Gaussian
pulse is launched in a DM system with distributed amplification using
bidirectional pumping scheme. The dispersion map consist of two
fibers of equal length Ly = Lo = L/2, where L = 4.216km. Spacing
between pumping station is L, = 29.5km, i.e., 7 dispersion map in
one pumping period. In the distributed amplification scheme that is
the case considered in the present investigation, the transmission fiber
is lightly doped with erbium ions and is pumped periodically from
one or both directions, creating sufficient gain for compensating the
fiber loss. Since the gain is distributed throughout the fiber links
and compensates the fiber loss locally all along the fiber, soliton
peak power variation in this system can be made much smaller
as compared to a system with the lumped amplification scheme.
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The most important criteria for designing soliton based transmission
system with distributed amplification is to ensure that peak power
varies as little as possible over each fiber span. Taking fibers with
realistic attenuation o = 0.22dB/km, the net signal gain defined as

G(Z) = exp <f g(z)dz — az) over one fiber span is small. For such
0

systems, soliton peak power varies less than 5% compared with original
value. The resulting noise due to distributed amplification under such
cases is also small. It is well documented [29] that bi-directional
pumping causes small timing jitter. In fact, timing jitter in a DM
system with distributed amplification and bi-directional pumping is not
significantly different from the timing jitter caused in ideal distributed
amplification for which losses are compensated by gain at every point.
Thus, without sacrificing much accuracy, we focus on the case of ideal
distributed amplification scheme in which local gain g(Z) = « at each
point so that G(Z) =1 in Egs. (15)—(18). This simplification is usual
and has been employed in many important investigations [29].

Before we take up numerical experiment, it is worth mentioning
that, with the aid of full numerical simulation of MNLSE [30], it
has been established that the interaction strength of neighbouring
pulses is minimum when map strength S = 1.65. Therefore, while
designing a DM system, in order to obtain optimum performance, we
carefully select design parameters, particularly the length of the two
types of fibers and their GVD value in such a way so as to achieve
a map strength of S =~ 1.65. At this map strength the interaction
strength of neighbouring pulses is minimum, this ensures better system
performance. We first take a 100 Gb/s DM system operating at a
wavelength A = 1.55 um. The required pulse width with a duty
cycle of 4:1 is Trwpuym = 2.5ps. We take typical fiber parameters
B = —2.4995ps? /km, B{Y = 2.23926ps?/km, B3 = —0.05ps®/km,
F'r = 3fs and @ = 0.22dB/km at the operating wavelength. For
Gaussian input pulse Ty = Tpwga/1.665 = 1.5ps. The calculated
value of different parameters are as follows < d >= 0.10, p =
—0.0104, £ = 0.0006, and Tr = 0.002. As initial condition we take
Gaussian chirp free pulse (C(0) = 0). We now solve Egs. (15)—(18)
to find launching criteria of input pulses i.e., to find out appropriate
value of pulse parameters such that 7, C' and Ey. We have launched
the optical pulse at the chirp free point, which is the mid-point of
an anomalous dispersion segment. At this point the pulse-width is
minimum, and for convenience, at this point the normalized pulse
width is taken as 7(0) = 1, which corresponds to Trw s = 2.5 ps for
a 100 Gb/s transmission rate. We have allowed the pulse to propagate
and applied the boundary conditions 7'(0) = T'(L) and C(0) = C(L)
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Figure 2. Evolution of pulse width and chirp within a DM cell. (a)
Phase space trajectory of pulse width 7" and chirp C, (b) Variation of
pulse width 7" with propagation distance Z, and (c¢) Variation of chirp
C with propagation distance Z.

to find out appropriate value of Ey by trail and error method. This
estimated value of Ey has been used for subsequent investigation. The
normalized optimum peak power is obtained by dividing Ey with 7°(0).

Solutions of variational Eqs. (15)—(18) over one DM cell have
been displayed in Figure 2. Pulse width T and chirp C' produces
a closed trajectory in the phase plane. Pulse width 7T is minimum
at two ends of the DM cell. From Figure 2, it is evident that the
variation of chirp with distance of propagation is linear. In the next
step we use these solutions as input to the Eq. (3) and obtain full
numerical solution of this equation. To obtain full numerical solution,
we adopt well known split step Fourier method(SSFM) [23]. In this
method the linear part has been solved using Fourier transform, while
the nonlinear part has been solved using a fourth order Runge-Kutta
algorithm for integration. The pulse has been allowed to propagate
a distance of 4000 km during which no shading of radiation is visible.
Under the influence of all the three higher order effects, namely, third
order dispersion, intra-pulse Raman scattering and self steepening, the
typical variation of the pulse shape within a single DM cell has been
depicted in Figure 3. An example of the pulse dynamics of a solitary
pulse over 4000 km is shown in Figure 4. It is noteworthy that although
the higher order linear and nonlinear effects have been considered,
the shape of the pulse remains unchanged and no distortion of pulse
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Figure 3. Pulse dynamics within a DM cell as obtained by full
numerical simulation.
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Figure 4. Propagation of a single pulse over a distance of 4000 km.
Ep = 0.6875, Trwma = 2.5ps, < d >= 0.10. Map strength S = 1.65
(a) Temporal behaviour of the pulse. (b) Spectrum of the pulse.

shape has been identified. We have not noticed any asymmetrical
broadening in the time domain due to third order dispersion. However,
the phenomenon of self frequency shifts (SFS), owing to intra pulse
Raman scattering has been clearly observed which resulting in slowing
down the DM soliton. Therefore, as a result of this slowing down the
central position of soliton shifts which is evident from Figure 4(a).
The variation of the soliton central position ¢, with distance
of propagation has been displayed in Figure 5. Both variational
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Figure 5. Variation of pulse centre ¢, with propagation distance Z.
Solid line obtained from solution of ODE’s and broken line obtained
from direct numerical simulation. Ey = 0.6875, Trwgym = 2.5ps,
< d >=0.10. Map strength S = 1.65.

0.51
_ 045} 1
(]
2
(o]
o
E
S 0.4f
o
Q
(%2}
=]
a
0.35f
03 - v v ‘
0 500 1000 1500 2000
Z (in km)

Figure 6. Variation of pulse peak power with propagation distance
Z. Solid line for direct numerical simulation and dashed line for curve
obtained from ODEs. Map strength S = 1.65.

and full numerical simulation results have been depicted. Results of
variational formalism agree quite well with the results of full numerical
simulations. We have examined the variation of ¢, with dispersion
and verified that it increases with the average dispersion, a known
documented result. In Figure 6, the variation of normalised pulse
peak power with propagation distance Z is shown for a distance of
2000 km. In figure the dashed line curve is obtained by solving variation
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equations, whereas the solid line is obtained by solving equation (3)
directly using SSFM. For both cases the value of the peak power has
been noted down at the end of each DM cell where the pulse width is
minimum as shown in Figure 2. Soliton energy Ej is a very important
parameter in any optical communication systems since it not only
affects the interaction strength between neighbouring optical pulses
but also affects signal to noise ratio. Variation of pulse energy Fg with
< d > has been depicted in Figure 7. Pulse energy increases with the
increase in the value of < d >.

25

0.5¢

0.1 0.2
<d>

Figure 7. Variation of input pulse energy Fy with average dispersion
< d >. Map strength S = 1.65.

Pulse Interaction: After establishing that an isolated single
pulse can travel large distance before being distorted or disintegrated,
we turn our attention to study the nature of interaction between
neighbouring pulses. We confine our attention to two cases, i.e.,
(i) interaction between two neighbouring pulses, and, (ii) interaction
between a train of eight pulses. For both cases we take identical pulse
with no initial phase difference. To study the nature of interaction we
rely solely on numerical simulation of Eq. (3). However, the parameters
of input pulses are decided from single soliton solution of ODE’s given
by Egs. (15)-(18) and outlined earlier. We take following initial pulse

profile:
Ey, &Y (1 — (20 — 1)t,)? (T + (20 — 1)t,)?
e e e e e |

(19)
where N = 1 for two solitons interaction and N = 4 for eight solitons

A=
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Figure 8. Interaction of two identical in phase neighbouring pulses.
Transmission speed 100 Gb/s. For each pulse Ey = 0.6875. < d >=
0.10(a) Contour plot, (b) Mesh plot. Map strength S = 1.65.

interaction. For 100 Gb/s transmission speed the peak-to-peak pulse
separation in natural units is 2¢,, = 10 ps. Figure 8 displays an example
of the intra-channel interaction between two DM solitons in the SPDM
system, whereas Figure 9 demonstrates interaction among pulses in
the 8 bit pulse train. We have repeated our numerical experiments for
different values of < d > and noted down the collision distance between
neighbouring pulses for different cases. The collision distance for the 8
bit pulse train is taken as the distance at which any two neighbouring
pulses of the train collapse. The variation of collision distances with the
average dispersion < d > for two and eight pulses has been displayed
in Figure 10. In this figure, the solid line represents two soliton
interactions and dashed line represents eight solitons interaction. It
is evident from the figure that for both two and eight pulses soliton
propagation the interaction length is larger for smaller value of < d >.
Hence, very large value of < d > should be avoided during system
design. It is noteworthy from Figure 10 that the collision distance for
the train of eight pulses is larger in comparison to collision distance for
two pulses. In addition, two outer member of the pulse train collide
earlier than any two inner member of the pulse train. This may be
attributed to the fact that, for a pulse, which is located inside, the
train the presence of pulses in both sides of the time domain produce
symmetrical attractive interaction force, i.e., the pulse experiences
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Figure 9. Interaction of eight identical in phase DM soliton pulses.
Transmission speed 100 Gb/s. For each pulse Ey = 0.6875. < d >=
0.10 (a) Contour plot, (b) Mesh plot. Map strength S = 1.65.

attractive force both in the front and tail portion. Thus, since pulses
from both sides attract with equal force thereby effectively reducing
the collision distance. Whereas, for a pulse in the outer region of the
train, interaction force is asymmetric resulting in early collision. This
argument is also applicable for the case of a pair of pulses.

We now proceed to examine the roles played by higher order linear
and nonlinear effects. We allow two and eight pulses to propagate down
the system and switch off all higher order terms from the MNLSE.
The behaviour of pulse dynamics for 100 Gb/s system is shown in
Figure 11. It has been estimated that in comparison to the case
where all the three higher order perturbation terms are present, in the
present case the collision length for two interacting neighbouring pulses
reduces approximately 7%, whereas the reduction in collision length for
eight interactions is only 4%. The behaviour of pulse dynamics for an
110 Gb/s and 120 Gb/s system have been respectively shown in Figs. 12
and 13. Intra-pulse collision distance at different transmission rate has
been depicted in Fig. 14. From figure it is evident that higher order
effects have negligible influence on intra-pulse collision distance. We
have confirmed that the change in collision distance due to higher order
effects is less than 4% for transmission rate higher than 100 Gb/s. This
is due to the fact that at still higher transmission rate the initial intra-
pulse distance is very small and these intra-pulse separations mainly
determine the collision distance, the higher order linear and nonlinear
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Figure 10. Variation of collision distance with average dispersion
< d >. Solid line for two soliton interaction and dashed line for
eight soliton interaction. Transmission speed 100 Gb/s. Map strength
S = 1.65.
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Figure 11. Pulse dynamics at 100 Gb/s without intra-pulse Raman
scattering, self steepening and third order dispersion. (a) Interaction
of two pulses, (b) interaction of eight identical pulses. For each pulse
FEo = 0.6875. Map strength S = 1.65.
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Figure 12. Pulse dynamics at 110 Gb/s with < d >= 0.10. Each pulse
is identical with energy Fy = 0.6875 Upper panel is for two pulses,
whereas the lower panel is for a train of eight identical pulses. subplot
(a) and (c) are without intra-pulse Raman scattering, self steepening
and third order dispersion. Subplot (b) and (d) are with intra-pulse
Raman scattering, self steepening and third order dispersion. Map
strength S = 1.65.
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Figure 13. Pulse dynamics at 120 Gb/s with < d >= 0.10. Each pulse
is identical with energy Fy = 0.6875 Upper panel is for two pulses,
whereas the lower panel is for a train of eight identical pulses. subplot
(a) and (c) are without intra-pulse Raman scattering, self steepening
and third order dispersion. Subplot (b) and (d) are with intra-pulse
Raman scattering, self steepening and third order dispersion. Map
strength S = 1.65.
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Figure 14. Variation of intra-pulse collision length with transmission
speed. Solid line represents a case when third order dispersion, self
steepening and Raman scattering is absent. Dotted line represents the
case when all three higher order terms are present. (a) Two pulses.
(b) Eight pulses. Map strength S = 1.65.

phenomena have only marginal influence on intra-pulse interaction in
dense dispersion managed systems.

4. CONCLUSION

In this paper we have investigated optical pulse propagation in a high
bit rate dense dispersion managed(DM) optical communication system
operating at the speed of 100 Gb/s and more taking into account of
the effects of third order dispersion, intra-pulse Raman scattering
and self steepening. Using perturbed variational formulation, we
have obtained several ordinary differential equations for various pulse
parameters. These equations have been solved numerically to identify
launching criteria in the first DM cell of the system. Full numerical
simulation of the nonlinear Schrédinger equation has been undertaken
to identify effects of higher order terms on pulse propagation and to
investigate the intra-pulse interaction. For a 100 Gb/s system, it has
been found that the shift of the pulse centre due to intra-pulse Raman
scattering increases with the increase in the distance of propagation
and average dispersion. We have noticed that for higher value of
average dispersion pulses travel less distance before collision than for
lower average dispersion, thus large value of < d > is detrimental to
long distance propagation.
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