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Abstract—Maxwell’s equations are solved to determine transient
electromagnetic fields inside as well as outside of a large conducting
plate of an arbitrary thickness. The plate is carrying a uniformly
distributed excitation winding on its surfaces. Transient fields are
produced due to sudden application of a d.c. voltage at the terminals of
the excitation winding. On the basis of a linear treatment of this initial
value problem it is concluded that the transient fields may decay at a
faster rate for conducting plates with smaller values of relaxation time.
It is also shown that the growth of flux in a perfectly nonconducting
plate is a piecewise linear function of time and the current in its
excitation winding is a series of step function of time.

1. INTRODUCTION

If a step d.c. voltage is applied to a coil, the resulting current in
the coil is time-dependent. At any instant the coil terminal voltage
must equal the resistance drop minus the induced voltage due to the
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growth of coil flux. This leads to an ordinary differential equation.
The magnetic field in the core of the coil varies with time as well as
space coordinates. Therefore, the system involves both, ordinary as
well as partial differential equations.

As an example of voltage impact excitation, consider a large plate
carrying a uniformly distributed excitation winding on its surfaces.
When a step d.c. voltage is impressed across the terminals of this
winding an electric field, Eo, which is equal to the applied voltage per
unit conductor length, appears instantly along the winding conductor.
Consequently, a d.c. current flows in the winding. If the plate is
made of a conducting material, this current does not appear instantly.
It grows from zero to the steady-state value, which is the ratio of
the applied voltage to the winding resistance. The rate of growth of
this excitation current is influenced by eddy currents induced in the
conducting plate. The excitation current together with eddy currents
in the plate, produces magnetic flux in the plate. In the case of a
perfectly nonconducting plate, the magnetic flux is produced by the
excitation current alone. The rate of change of this magnetic flux
induces electric field opposing the applied electric field Eo, along the
excitation winding on the plate surface.

Many technical papers have been published on electromagnetic
transients in solid blocks of steel. Weber [1], Wagner [2], Concordia
and Poritsky [3], and also Pohl [4] are amongst the early contributors.
A number of research papers on electromagnetic transients [5–
13] appeared subsequently. Recently, research papers on transient
analyses of grounding systems, transmission lines and impulsive sources
appeared [14–18], indicating the importance of the study.

Study of transient fields due to current impact excitation has
been reported [19–21] by various authors. In the present treatment
of voltage impact excitation, Maxwell’s equations are solved for
transient fields in a large conducting plate with constant values for
permeability, µ, permittivity, ε, and conductivity, σ. Transient fields
for nonconducting plates are also studied. The analysis presented here
is a sequel to an earlier work [21] on impact excitation, published in
this journal. This paper, however, is readable independently.

2. FIELD EQUATIONS

Consider Fig. 1, showing a large conducting plate of thickness W ,
carrying uniform current sheets of density ±Ky on its surfaces located
at x = ±W/2. These current sheets simulate the excitation winding
carrying the transient current produced due to sudden application of
a d.c. voltage across its terminals at t = 0.
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Figure 1. Large conducting plate with surface current sheets.

Because of symmetry only y-component of electric field and only
z-component of magnetic field exist. The former is an odd function and
the latter is an even function of x. Further, both transient fields vanish
as t tends to infinity. However, a steady magnetic field is established in
the plate. These fields satisfy Maxwell’s equations in one dimension:

∂Ey

∂x
= −µ∂Hz

∂t
(1)

and

−∂Hz

∂x
= σEy + ε

∂Ey

∂t
(2)

Therefore, electromagnetic fields obey the following equations:

∂2Ey

∂x2
= µσ

∂Ey

∂t
+ µε

∂2Ey

∂t2
(3)

and

∂2Hz

∂x2
= µσ

∂Hz

∂t
+ µε

∂2Hz

∂t2
(4)

For free space:

σ = 0, (5)
µ = µ0, (6)
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and

ε = ε0 (7)

3. STEADY STATE DISTRIBUTION OF
ELECTROMAGNETIC FIELDS

As shown in Fig. 1, let the region occupied by the plate, −W/2 <
x < W/2, be indicated as region 1, while the regions x > W/2 and
x < −W/2, be indicated as regions 2 and 3, respectively. In view of
the symmetry, it will be sufficient to consider the field distributions in
regions 1 and 2 only. At the boundary between these two regions, i.e.,
at x = W/2, we have

H1z = H2z +Ky (8)

and

E1y = E2y (9)

where suffix 1 indicates fields in region 1, and suffix 2 indicates fields in
region 2. The current sheet with a time varying surface current density
Ky, simulates the excitation winding carrying the transient current. Its
value is zero until the d.c. voltage is applied to the winding, i.e., for
t ≤ 0.

Before the onset of transient, i.e., for t < 0, the initial fields are:

H1z = 0 (10a)

and

E1y = 0 (10b)

over −W/2 < x < W/2, while,

H2z = 0 (11a)

and

E2y = 0 (11b)

for W/2 < x.
Further, for t = ∞:

H1z = K∞, (say) (12a)
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and

E1y = 0, (12b)

over −W/2 < x < W/2, while

H2z = E2y = 0 (13)

for W/2 < x.
Lastly, for t = 0 and x = W/2:

H1z = H2z = 0 (14)

and

E1y = E2y = −Eo (15)

These solutions are consistent with boundary conditions defined by
Eqs. (8) and (9) as Ky is zero for t < 0. The value of the surface
current density Ky becomes a constant, say K∞, once the excitation
current is stabilized to a steady state value. A relation between K∞
and Eo can be given as:

Eo = ρsK∞ (16)

where the surface resistivity ρs, depends on the excitation winding
resistance and is independent of the plate conductivity σ.

4. TRANSIENT FIELDS FOR CONDUCTING PLATES

4.1. Fields inside the Plate

Consider the electromagnetic fields inside the plate. These fields
must satisfy the initial conditions given by Eqs. (10a) and (10b), for
−W/2 < x < W/2. Further, inside the plate, the magnetic field must
converge to K∞ and the electric field must vanish as t tends to infinity.
Also, on the plate surface x = W/2, these fields at t = 0 must satisfy
Eqs. (14) and (15). Therefore, field expressions satisfying Eqs. (1)–(4),
can be given as:

E1y = −Eo.ζ.
2x
W

.e−
t
τ − Eo. (1 − ζ) .

sin
(
θ
2x
W

)
sin (θ)

.

[
1 − t

2τ

]
.e−

t
2τ

+
∞∑

m=1

am

(αm−βm)
sin

(
mπ

2x
W

)
.
[
αm.e

−αmt−βm.e
−βmt

]
(17)
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and

H1z = K∞ −K∞.e−
t
τ +K∞. (1 − ζ) .

θ

τ.ζ
.

cos
(
θ
2x
W

)
sin (θ)

.t.e−
t
2τ

+
∞∑

m=1

bm. cos
(
mπ

2x
W

)
.
[
e−αmt − e−βmt

]
(18)

where,

θ =
σ

2

√
µ

ε
.
W

2
(19)

ζ =
σ

ε
.
µ

ρs
.
W

2
(20)

τ =
ε

σ
(21)

αm, βm =
1
2τ

± 1
2τ

.
π

θ
.

√
(θ/π)2 −m2 (22)

am = −Eo.
2
π
. cos (mπ)

[
m2 − (

√
ζ.θ/π)2

m. {m2 − (θ/π)2}

]
(23a)

and

bm = am.
1
µ
.

(
m

2π
W

)
(αm − βm)

(23b)

4.2. Transient Current Sheet

The voltage applied to the excitation winding is equal to the sum of
the voltage drop in the winding resistance and the rate of change of
flux linking the winding. The magnetic flux φ, per unit length in the
y-direction is:

φ = µ

W/2∫
−W/2

H1z.dx (24)

Using the expression for H1z from Eq. (18), one gets:

φ = µ.WK∞.

[(
1 − e−

t
τ

)
+

(
1 − ζ

ζ

)
.
t

τ
.e−

t
2τ

]
(24a)
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Therefore,

Eo = ρs.Ky +
dφ

dt
(24b)

in view of Eqs. (16), (24a) and (24b) one gets:

Ky = K∞.

[
1 − ζ.e−

t
τ − (1 − ζ) .

{
1 − t

2τ

}
.e−

t
2τ

]
(25)

From this equation it may be seen that:

Ky = 0, for t = 0 (26a)

and

Ky = K∞, for t = ∞ (26b)

4.3. Fields outside the Plate

Both electric and magnetic fields, as shown by Eqs. (11a) and (11b)
are zero until the instant t = 0, when the step d.c. voltage is applied to
the excitation winding. At this instant the applied electric field on the
plate surface at x = W/2, being Eo, the induced electric field suddenly
changes from its original zero value to −Eo, vide Eq. (15). This
causes electromagnetic transients. A sudden change in the magnitude
of electromagnetic field also occurs for x > W/2, though at a later
instant of time as the electromagnetic disturbance propagates in free
space with a finite velocity c.

The sudden appearance of electric field on the plate surface
initiates traveling waves in free space that vanish as t tends to infinity.
Wave-front of each wave moves away from the plate surface with the
velocity c.

The electromagnetic fields in region-2 satisfy wave equation, thus

∂2Ey

∂x2
= µ0ε0

∂2Ey

∂t2
(27a)

and

∂2Hz

∂x2
= µ0ε0

∂2Hz

∂t2
(27b)

Further, we have

Hz

(
t±√

µ0ε0.x
′) = ∓

√
ε0
µ0

.Ey

(
t±√

µ0ε0.x
′) (28)
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where,

x′ = x−W/2 (29)

Therefore, in view of boundary conditions, vide Eqs. (8) and (9),
the expressions for electric and magnetic fields in region 2, found using
Eqs. (17), (18), (25), and (28), are as follows:

E2y = −1
2
Eo. (1 − ζ) .

[(
1 − t−

2τ

)
.e−

t−
2τ +

(
1 − t+

2τ

)
.e−

t+
2τ

]

−1
2
Eo.ζ.

[
e−

t−
τ + e−

t+
τ

]
−

√
µ0

ε0
.
1
2
K∞. (1 − ζ) .

[
e−

t−
τ − e−

t+
τ

]

+
√
µ0

ε0
.
1
2
K∞. (1 − ζ) .

[
1 −

(
1 − 2θ

ζ
. cot θ

)
.
t−
2τ

]
.e−

t−
2τ

−
√
µ0

ε0
.
1
2
K∞. (1 − ζ) .

[
1 −

(
1 − 2θ

ζ
. cot θ

)
.
t+
2τ

]
.e−

t+
2τ

+
√
µ0

ε0
.
1
2

∞∑
m=1

bm. cos (mπ) .
[(
e−αm.t− − e−βm.t−

)

−
(
e−αm.t+ − e−βm.t+

)]
(30)

and

H2z =
1
2
K∞. (1 − ζ) .

[
1 −

(
1 − 2θ

ζ
. cot θ

)
.
t−
2τ

]
.e−

t−
2τ

+
1
2
K∞. (1 − ζ) .

[
1 −

(
1 − 2θ

ζ
. cot θ

)
.
t+
2τ

]
.e−

t+
2τ

+
1
2

∞∑
m=1

bm. cos (mπ) .
[(
e−αm.t− − e−βm.t−

)

+
(
e−αm.t+ −e−βm.t+

)]
− 1

2
K∞. (1 − ζ) .

[
e−

t−
τ + e−

t+
τ

]
−

√
ε0
µ0

.
1
2
Eo.ζ.

[
e−

t−
τ − e−

t+
τ

]

−
√

ε0
µ0
.
1
2
Eo. (1 − ζ).

[(
1 − t−

2τ

)
.e−

t−
2τ −

(
1− t+

2τ

)
.e−

t+
2τ

]
(31)

where, the retarded time t−, and the accelerated time t+ are defined
as:

t− = t−√
µ0ε0.x

′ (32a)
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and

t+ = t+
√
µ0ε0.x

′ (32b)

In order to satisfy the initial conditions, vide Eqs. (11a) and
(11b), we multiply the R.H.S. of Eqs. (30) and (31) by the unit step
function u {t−}. Field expressions thus modified are consistent with
the observation made at the beginning of this section.

5. TRANSIENT FIELDS FOR NONCONDUCTING
PLATES

Consider a perfectly nonconducting large plate, carrying a uniformly
distributed excitation winding on its surfaces. If at t = 0, a step
d.c. voltage is applied to the terminals of this winding, an electric
field Eo appears instantly along the winding conductor. There being
no eddy currents in the plate, an initial current immediately sets up
in the winding. Let this current be represented as a uniform surface
current density ±Ko, on the plate surface at x = ±W/2. The sudden
appearance of surface currents will initiate traveling-waves in the three
regions shown in Fig. 1. These waves, for region-1 and -2 can be
expressed in terms of unit step functions as:

H1z =K〈1|1〉.u {t+
√
µε. (x−W/2)}+K〈1|1〉.u {t−

√
µε. (x+W/2)}

(33a)

E1y = −
√
µ/ε.K〈1|1〉.u {t+

√
µε. (x−W/2)}

+
√
µ/ε.K〈1|1〉.u {t−

√
µε. (x+W/2)} (33b)

H2z = −K〈2|1〉.u {t−
√
µ0ε0. (x−W/2)} (34a)

E2y = −
√
µ0/ε0.K〈2|1〉.u {t−

√
µ0ε0. (x−W/2)} (34b)

for 0 < t < T , where,

T = W.
√
µε (35)

while, K〈1|1〉 and K〈2|1〉 indicate arbitrary constants and u {.} indicates
unit step function.

In view of Eqs. (8) and (9):

K〈1|1〉 +K〈2|1〉 = Ko (36)
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and √
µ/ε.K〈1|1〉 =

√
µ0/ε0.K〈2|1〉 (37)

Consider Eq. (33a). At the instant t = 0, an H-wave initiating
from each plate surface travels across the plate towards the opposite
plate surface, with a constant velocity, 1/

√
µε. While the two H-waves

travel in the opposite directions, a time varying magnetic flux, φo, is
established in the plate. This flux, per unit plate length in the y-
direction, is given as:

φo = 2µ.K〈1|1〉.W.

(
t

T

)
(38)

for 0 < t < T .
Therefore, in view of Eqs. (24b) and (35):

Eo = ρs.Ko +
√
µ/ε.K〈1|1〉 (39)

Solving Eqs. (36), (37) and (39), one gets:

K〈1|1〉 =
Eo.

√
ε/µ

F0
(40a)

K〈2|1〉 =
Eo.

√
ε0/µ0

F0
(40b)

and

Ko =
Eo.

(√
ε/µ+

√
ε0/µ0

)
F0

(40c)

where,

F0 = 1 + ρS .
(√

ε/µ+
√
ε0/µ0

)
(41)

At the instant t = T, the two H-waves in the plate region, traveling
in opposite directions across the plate thickness, reach air regions. At
this instant the growth of the flux φo, due to the surface current
Ko, completes and the rate of growth of this flux ceases abruptly.
Therefore, at this instant in view of Eq. (24b), the surface current
density increases instantly, by an amount, say K1. The resulting
surface current density is the sum of Ko and K1. This sudden change
in the surface currents initiates a new set of traveling-waves in the
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three regions shown in Fig. 1. The resulting electromagnetic fields in
the plate region can now be given as follows:

H1z = 2K〈1|1〉 +K〈1|2〉.u {(t− T ) +
√
µε.(x−W/2)}

+K〈1|2〉.u {(t− T ) −√
µε.(x+W/2)} (42a)

and

E1y = −
√
µ/ε.K〈1|2〉.u {(t− T ) +

√
µε.(x−W/2)}

+
√
µ/ε.K〈1|2〉.u {(t− T ) −√

µε.(x+W/2)} (42b)

for T < t < 2T , where, K〈1|2〉 indicates an arbitrary constant.
While, electromagnetic fields in region-2 can be given as:

H2z = K〈1|1〉.u {(t− T ) −√
µ0ε0.(x−W/2)}

−K〈2|1〉.u {t−
√
µ0ε0.(x−W/2)}

−K〈2|2〉.u {(t− T ) −√
µ0ε0.(x−W/2)} (43a)

and

E2y =
√
µ0/ε0.K〈1|1〉.u {(t− T ) −√

µ0ε0.(x−W/2)}
−

√
µ0/ε0.K〈2|1〉.u {t−

√
µoε0.(x−W/2)}

−
√
µo/ε0.K〈2|2〉.u {(t− T ) −√

µ0ε0.(x−W/2)} (43b)

for T < t < 2T , where, K〈2|2〉 indicates an arbitrary constant.
Now, in view of Eqs. (8), (9) and (35):

K〈1|2〉 +K〈2|2〉 = K1 (44)

and √
µ/ε.K〈1|2〉 =

√
µ0/ε0.

(
K〈2|2〉 +K〈2|1〉 −K〈1|1〉

)
(45)

While the new H-waves travel in the opposite directions in the
plate, due to the surface current density (Ko + K1) a time varying
magnetic flux φ1, is established in the plate. This flux, per unit plate
length in the y-direction, is given as:

φ1 = 2µ.W.K〈1|1〉 + 2µ.W.K〈1|2〉.
(t− T )

T
(46)

for T < t < 2T .
Therefore, Eqs. (24b) and (35) give:

Eo = ρS .(Ko +K1) +
√
µ/ε.K〈1|2〉 (47)
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On solving Eqs. (44), (45) and (47), one gets in view of Eqs. (40a)–
(40c):

K〈1|2〉 = Eo.
F1

F 2
0

.

√
ε

µ
(48a)

K〈2|2〉 = Eo.
F2

F 2
0

.

√
ε

µ
(48b)

and

K1 = Eo.
2
F0

.

√
ε

µ
(48c)

where,

F1 = 1 − ρS .(
√
ε/µ−

√
ε0/µ0) (49a)

F2 = 1 + ρS .(
√
ε/µ−

√
ε0/µ0) (49b)

At the instant t = 2T , the rate of growth of the flux φ1, ceases
abruptly, resulting a further increment in the surface current density.
This sudden increase in the surface current density triggers fresh
electromagnetic waves inside and outside of the plate. This process
is repeated periodically with time-period T , resulting progressively
diminishing increments in the surface current density. Therefore, the
excitation current is an almost periodic function of time.

Consider the instant t = m.T , ( for m = 1, 2, 3, . . .∞.). At this
instant, let the increment in the surface current density be Km, and the
amplitude of new H-waves inside and outside of the plate, respectively
be K〈1|m+1〉 and K〈2|m+1〉. The generalized form for Eqs. (44) and (45)
are:

K〈1|m+1〉 +K〈2|m+1〉 = Km (50)√
µ

ε
.K〈1|m+1〉 =

√
µ0

ε0
.

m∑
n=1

[
K〈2|n+1〉 −K〈1|n〉

]
(51)

for m = 1, 2, 3, . . . ,∞.
Further, the generalized form for the Eq. (47) is:

Eo = ρS .

[
Ko +

m∑
n=1

Kn

]
+

√
µ

ε
.K〈1|m+1〉 (52)

where, the expression for Ko is given by Eq. (40c).
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Solution for Eqs. (50)–(52), results:

K〈1|m+1〉 = Eo.

√
ε/µ

F0
.

[
F1

F0

]m

(53)

K〈2|m+1〉 = Eo.

[√
ε0/µ0

F0
+

√
ε/µ−

√
ε0/µ0

F1

]
.

[
F1

F0

]m

(54)

Km = Eo.

[√
ε/µ+

√
ε0/µ0

F0
+

√
ε/µ−

√
ε0/µ0

F1

]
.

[
F1

F0

]m

(55)

for m = 1, 2, 3, . . . ,∞.
Using Eqs. (16), (40c) and (55), it may be seen that the steady

state surface current density K∞, satisfies the following equation:

K∞ = Ko +
∞∑

m=1

Km (56)

5.1. Growth of the Magnetic Flux in the Plate

The generalized form for Eq. (46), giving the magnetic flux in the plate
per unit plate length in the y-direction, is as follows:

φm = 2.Wµ
m∑

n=1

K〈1|n〉 + 2.Wµ.K〈1|m+1〉.
(t−m.T )

T
(57)

over m.T < t < (m+ 1).T , for m = 1, 2, 3, . . . ,∞.
Therefore the expression for the steady state value of this flux is:

φ∞ = 2.Wµ
∞∑

n=1

K〈1|n〉 = WµK∞ (58)

6. CONCLUSION

The treatment for the conducting plate assumes a finite, but nonzero
value for the plate conductivity, σ.

(1) Eqs. (17) and (18) show that the transient electromagnetic fields
in the conducting plate can be expressed as continuous functions
of time and space coordinates. Transient fields, for a plate with
small values of relaxation time, τ , decay at a faster rate.
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(2) Eq. (24a) shows that the magnetic flux in the plate can be
expressed as a continuous nonlinear function of space and time.
This flux grows smoothly from zero value to the steady state
value. Its rate of growth depends on the relaxation time τ and
the plate parameter ζ, which includes winding resistance as well
as constants of the plate, such as σ, ε, µ and W .

(3) Eq. (25) indicates that the excitation current does not appear
instantly. It grows smoothly from zero to the steady state value.
Its rate of growth depends on the same two parameters, viz. τ
and ζ.

(4) Transient electromagnetic waves are found outside the plate, vide
Eqs. (30) and (31). Wave-front of these nonuniform (modulated)
traveling-waves move away from the two surfaces of the plate.
These waves are discontinuous functions of space and time.

The treatment for the nonconducting plate leads to the following
conclusions:
(1) As shown by Eqs. (33a) and (33b), the transient electromagnetic

fields in a nonconducting plate can be expressed as a pair of
uniform traveling-waves moving in the opposite directions, from
one plate surface to the other. Thus electromagnetic fields in the
plate are discontinuous functions of space and time.

(2) Eq. (57) shows that the flux in the plate is a continuous function
of time. It grows from zero to a steady state value, as a piece-wise
linear function of time.

(3) In view of Eq. (55), the excitation current is a discontinuous
function of time. An initial non-zero value of this current instantly
sets in at the very moment a d.c. voltage source is connected to
the terminals of the excitation winding. The excitation current
consists of an infinite series of equally delayed step functions of
time, with progressively diminishing amplitude.

(4) from Eqs. (43a) and (43b), one may infer that electromagnetic
fields outside the plate consist of a series of uniform traveling-
waves with equally delayed wave-fronts, each moving away from
the plate surfaces. Thus, electromagnetic fields outside the plate
are discontinuous functions of space and time.

The differences in the two sets of conclusions drawn above, highlight
the effects of eddy currents induced in a conducting plate. Lastly,
it may be pointed out that the treatment presented in this paper
can be readily adapted for plates made of left-handed materials with
simultaneously negative permittivity and permeability [22–24].

The treatment considers a hypothetical situation involving a plate
with infinite surface area and uniformly distributed current sheets on
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its surfaces. In a practical situation, every time a circuit is switched
on, a part of the power supplied by the d.c. source is used to establish
magnetic field, another part is dissipated as eddy current loss in
conducting parts and ohmic loss in current carrying resisters. The
rest of the power from the d.c. source is lost in radiation.
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