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Abstract—This paper presents a thorough study of the time-domain
theory of metal cavity resonators. The completeness of the vector
modal functions of a perfectly conducting metal cavity is first proved
by symmetric operator theory, and analytic solution for the field
distribution inside the cavity excited by an arbitrary source is then
obtained in terms of the vector modal functions. The main focus of
the present paper is the time-domain theory of a waveguide cavity,
for which the excitation problem may be reduced to the solution of a
number of modified Klein-Gordon equations. These modified Klein-
Gordon equation are then solved by the method of retarded Green’s
function in order that the causality condition is satisfied. Numerical
examples are also presented to demonstrate the time-domain theory.
The analysis indicates that the time-domain theory is capable of
providing an exact picture for the physical process inside a closed cavity
and can overcome some serious problems that may arise in traditional
time-harmonic theory due to the lack of causality.

1. INTRODUCTION

The rapid progress in ultra-wideband technologies has prompted the
study of time-domain electromagnetics. Compared to the voluminous
literature on time-harmonic theory of electromagnetics, the time-
domain electromagnetics is still a virgin land to be cultivated. In
the time-domain theory, the fields are assumed to start at a finite
instant of time and Maxwell equations are solved subject to initial
conditions, boundary conditions, excitation conditions and causality.
A metal cavity resonator constitutes a typical eigenvalue problem in
electromagnetic theory and has been investigated by a number of
authors [e.g., 1–5], and the study of the transient process in a metal
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cavity may be carried out by the field expansions in terms of the modal
vector functions. When these expansions are introduced into the time-
domain Maxwell equations one may find that the expansion coefficients
satisfy the ordinary differential equations of second order [3], which
can be easily solved once the initial conditions and the excitations
are known. Recently this approach has been used to investigate the
responses of the metal cavity to digital signals [4].

Although the study of metal cavity resonator has a long history,
there are still some open questions which need to be investigated. This
paper attempts to answer these questions, and presents a thorough
discussion on the time-domain theory of metal cavities. The paper
is organized as follows. Section 2 studies the eigenvalue theory
of a perfectly conducting metal cavity filled with lossy medium.
A fundamental problem in metal cavity theory is to prove the
completeness of its vector modal functions, which has been tried by
Kurokawa [1]. But there is a loophole in Kurokawa’s approach in
which he fails to show the existence of the vector modal functions.
The main purpose of Section 2 is to provide a rigorous proof of the
completeness of the vector modal functions on the basis of the theory
of symmetric operators. Section 3 summarizes the field expansions
inside an arbitrary metal cavity filled with lossy medium in terms
of the vector modal functions, and discusses the limitations of the
time-harmonic theory when it is applied to a closed metal cavity.
Section 4 is dedicated to a metal cavity formed by a section of uniform
waveguide, i.e., the waveguide cavity. The time-domain theory of the
waveguide developed previously [6] is applicable to this case, and the
fields inside the waveguide cavity can be expanded in terms of the
transverse vector modal functions of the corresponding waveguide. The
expansion coefficients of the fields are shown to satisfy the modified
Klein-Gordon equation subject to homogeneous boundary conditions,
which are then solved by the method of retarded Green’s function to
satisfy the causality requirement. In order to validate the theory, some
examples are expounded in Section 5, and the field responses to typical
excitation waveforms are demonstrated.

An important observation in this paper is that the causality plays
an important role in determining the field response of a closed cavity.
In other words, one must take the initial conditions into consideration
in order to obtain a correct field response (transient or steady-state).
The time-domain theory shows that a sinusoidal response can be built
up if and only if the cavity is excited by sinusoidal source whose
frequency coincides with one of the resonant frequencies of the cavity.
The traditional time-harmonic theory, however, predicts that the field
response is always sinusoidal if the excitation source is sinusoidal.
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This discrepancy comes from the lack of causality in traditional time-
harmonic theory, which assumes that the source is turned on at t = −∞
instead of a finite instant of time and has ignored the initial conditions.

Another interesting observation is that the field responses in a
lossless cavity predicted by the time-harmonic theory are singular
everywhere inside the cavity if the frequency of the sinusoidal
excitation source coincides with one of the resonant frequencies of
the cavity, while the time-domain theory always gives finite field
responses. The singularities in time-harmonic theory can be removed
by introducing losses inside the cavity, which is essentially required by
the uniqueness theorem for a time-harmonic field in a bounded region.

2. EIGENVALUE THEORY FOR METAL CAVITY
RESONATOR

The metal cavity resonator constitutes a typical eigenvalue problem,
where the eigenvalues correspond to resonant frequencies of the
cavity and eigenfunctions correspond to the natural field distributions.
Given the eigenvalue problem, one must show the existence and
completeness of the eigenfunctions, and the latter implies that the set
of eigenfunctions can be used to expand an arbitrary function.

2.1. Eigenvalue Problems for a Metal Cavity

Let us consider a metal cavity with a perfectly conducting wall. It
will be assumed that the medium in the cavity is homogeneous and
isotropic with medium parameters σ, µ and ε. The volume occupied
by the cavity is denoted by V and the boundary of V by S (Figure 1).
Since the metallic wall is a perfect conductor, the transient fields in

S  

, ,σ µ ε  

V  

Figure 1. An arbitrary metal cavity.
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the cavity satisfy Maxwell equations


∇× E(r, t) = −µ
∂

∂t
H(r, t)

∇× H(r, t) = ε
∂

∂t
E(r, t) + σE, r ∈ V

∇ · E(r, t) = 0
∇ · H(r, t) = 0

(1)

with boundary conditions un×E = 0 and un ·H = 0, where un is the
unit outward normal to the boundary S and all other notations have
their usual meaning. From (1), one may obtain


 ∇×∇× E(r, t) + µε

∂2E(r, t)
∂t2

+ µσ
∂E(r, t)

∂t
= 0, r ∈ V

un × E(r, t) = 0, r ∈ S
(2)


 ∇×∇× H(r, t) + µε

∂2H(r, t)
∂t2

+ µσ
∂H(r, t)

∂t
= 0, r ∈ V

un · H(r, t) = 0, un ×∇× H(r, t) = 0, r ∈ S
(3)

If the solutions of (2) and (3) can be expressed as a separable function
of space and time

E(r, t) = e(r)u(t), H(r, t) = h(r)v(t)

it follows from (2) and (3) that{
∇×∇× e − k2

ee = 0, ∇ · e = 0, r ∈ V

un × e = 0, r ∈ S
(4)

{
∇×∇× h − k2

hh = 0, ∇ · h = 0, r ∈ V

un · h = 0, un ×∇× h = 0, r ∈ S
(5)

The functions u(t) and v(t) satisfy

1
c2

∂2u

∂t2
+ σ

η

c

∂u

∂t
+ k2

eu = 0 (6)

1
c2

∂2v

∂t2
+ σ

η

c

∂v

∂t
+ k2

hv = 0 (7)

where k2
e and k2

h are separation constants, η =
√
µ/ε and c =

1/
√
µε. Both (4) and (5) form an eigenvalue problem. However their
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eigenfunctions do not form a complete set. To overcome this difficulty,
(4) and (5) can be modified as [1]{

∇×∇× e −∇∇ · e − k2
ee = 0, r ∈ V

un × e = 0, ∇ · e = 0, r ∈ S
(8)

{
∇×∇× h −∇∇ · h − k2

hh = 0, r ∈ V

un · h = 0, un ×∇× h = 0, r ∈ S
(9)

These are the eigenvalue equations for the metal cavity system.

2.2. Completeness of the Eigenfunctions

The eigenvalue problems (8) and (9) have been discussed by Kurokawa
[1]. Kurokawa’s approach suffers a drawback that has overlooked the
proof of the existence of the eigenfunctions and eigenvalues. In the
following, a rigorous approach will be presented, which is similar to
what is used in studying the waveguide eigenvalue problem [6]. Let us
rewrite the eigenvalue problem (8) as{

B(e) = ∇×∇× e −∇∇ · e = k2
ee, r ∈ V

un × e = 0, ∇ · e = 0, r ∈ Γ
(10)

where B = ∇×∇×−∇∇. The domain of definition of operator B is
defined by

D(B) =
{
e

∣∣∣e ∈ (C∞(Ω))2 , un × e = 0, ∇ · e = 0 on Γ
}

where C∞(V ) stands for the set of functions that have continuous
partial derivatives of any order. Let L2(V ) stand for the space
of square-integrable functions defined in V and H = (L2(V ))3 =
L2(V ) × L2(V ) × L2(V ). For two vector fields e1 and e2 in (L2(V ))3,
the inner product is defined by (e1, e2) =

∫
V

e1 · e2dV (a bar is used

to designate the complex conjugate) and the corresponding norm is
denoted by ‖ · ‖ = (·, ·)1/2. (10) can be modified as an equivalent form
by adding a term ξe on both sides{

A(e) = ∇×∇× e −∇∇ · e + ξe =
(
k2
e + ξ

)
e, r ∈ V

un × e = ∇ · e = 0, r ∈ Γ
(11)

where ξ is an arbitrary positive constant. It is easy to show that
the operator A is symmetric, strongly monotone. In fact, for all
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e1, e2 ∈ D(A) = D(B), the energy product is given by

(e1, e2)A = (A(e1), e2) =
∫
V

(∇×∇× e1 −∇∇ · e1 + ξe1) · e2dΩ

=
∫
V

[∇× e1 · ∇ × e2 + (∇ · e1)(∇ · e2) + ξe1 · e2] dΩ (12)

Therefore the new operator A is symmetric. Thus e can be assumed
to be real. A is also strongly monotone since (A(e), e) ≥ ξ‖e‖2.
Therefore one can introduce the energy inner product of the operator A
defined by (u, v)A = (Au, v). The energy space HA is the completion
of D(A) with respect to the norm ‖ · ‖A = (·, ·)1/2A [7]. Let e ∈ HA,
and by definition, there exists admissible sequence {en ∈ D(A)} for e
such that ‖en − e‖ → 0 as n → ∞ and {en} is a Cauchy sequence in
HA. It follows from (12) that

‖en−em‖2
A = ‖∇ × en−∇× em‖2+‖∇ · en−∇ · em‖2+ξ ‖en − em‖2

Consequently {∇ × en} and {∇ · en} are Cauchy sequences in H. As
a result, there exist h ∈ H, and ρ ∈ L2(V ) such that ∇× en → h and
∇ · en → ρ as n → ∞. From integration by parts, one may write∫

V

∇× en · ϕdV =
∫
V

en · ∇ × ϕdV, ∀ϕ ∈ (C∞
0 (V ))3

∫
V

(∇ · en)ϕdV = −
∫
V

en · ∇ϕdV, ∀ϕ ∈ C∞
0 (V )

Letting n → ∞ yields∫
V

h · ϕdV =
∫
V

e · ∇ × ϕdV, ∀ϕ ∈ (C∞
0 (V ))3

∫
V

ρϕdV = −
∫
V

e · ∇ϕdV, ∀ϕ ∈ C∞
0 (V ).

In the above C∞
0 (V ) is the set of all functions in C∞(V ) that vanish

outside a compact subset of V . Therefore ∇ × e = h and ∇ · e = ρ
hold in the generalized sense. For arbitrary e1, e2 ∈ HA, there are two
admissible functions {e1n} and {e2n} such that ‖e1n − e1‖ → 0 and
‖e2n − e2‖ → 0 as n → ∞. Define

(e1, e2)A = lim
n→∞(e1n, e2n)A

=
∫
V

[∇× e1 · ∇ × e2 + (∇ · e1)(∇ · e2) + ξe1 · e2] dV
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where the derivatives must be understood in the generalized sense.
Now one can show that the embedding HA ⊂ H is compact. Let
J(e) = e, e ∈ HA. Then the linear operator J : HA → H is
continuous since

‖J(e)‖2 = ‖e‖2 ≤ ξ−1
(
ξ‖e‖2 + ‖∇ × e‖2 + ‖∇ · e‖2

)
= ξ−1‖e‖2

HA
.

A bounded sequence {en} ⊂ HA implies

‖en‖2
HA

= ‖en‖2 + ‖∇ × en‖2 + ‖∇ · en‖2

=
∫
V

[
ξ(enx)2 + ξ(eny)2 + (∇enx)2 + (∇eny)2

]
dΩ ≤ c′

where c′ is a constant. So the compactness of the operator J follows
from the above inequality and the Rellich’s theorem [1, 7]. Thus the
following theorem may apply to the operator A [7, pp. 284]

Theorem: Let H be a real separable Hilbert space with dimH = ∞
and A : D(A) ⊂ H → H be a linear, symmetric operator. Assume
that A is strongly monotone, i.e., there exists a constant c1 such that
(Au, u) > c1‖u‖2 for all u ∈ D(A). Let AF be the Friedrichs extension
of A and HA be the energy space of operator A. If the embedding
HA ⊂ H is compact, then the following eigenvalue problem

AFu = λu, u ∈ D(AF )

has a countable eigenfunctions {un}, which form a complete
orthonormal system in the Hilbert space H, with un ∈ HA. Each
eigenvalue corresponding to un has finite multiplicity. Furthermore
λ1 ≤ λ2 ≤ · · ·, and λn −→

n→∞∞.
It follows from this theorem that there exists a complete set of

real eigenfunctions {en}, called electric field modal functions, and
the corresponding eigenvalues, denoted by k2

e,n, which approach to
infinity as n → ∞. The set of modal functions will be assumed to
be orthonormal, i.e.,

∫
V

em · endv = δmn. It can be shown that each

modal function can be chosen from one of the following three categories
[1]:

I. ∇× en = 0, ∇ · en = 0
II. ∇× en �= 0, ∇ · en = 0

III. ∇× en = 0, ∇ · en �= 0.

Similarly one can show that the eigenvalues k2
h,n of (9) are real and

positive, and the corresponding magnetic modal functions hn are
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real and constitute a complete set, which will be assumed to be
orthonormal, i.e.,

∫
V

hm · hndv = δmn. Also each modal function can

be chosen from one of the following three categories:

I. ∇× hn = 0, ∇ · hn = 0
II. ∇× hn �= 0, ∇ · hn = 0

III. ∇× hn = 0, ∇ · hn �= 0.

The modal functions belonging to category II in the two sets of modal
functions {en} and {hn} are related to each other. Actually let en

belong to category II. Then ke,n �= 0 and one can define a function hn

through
∇× en = ke,nhn (13)

Therefore hn belongs to category II. Furthermore

∇×∇× h − k2
e,nh = k−1

e,n∇×
(
∇×∇× e − k2

e,ne
)

= 0, r ∈ V

and

un ×∇× hn = k−1
e,nun ×∇×∇× en = k−1

e,nun × k2
e,nen = 0, r ∈ S

Consider the integration of un ·hn over an arbitrary part of S, denoted
∆S ∫

∆S

un · hnds = k−1
e,n

∫
∆S

un · ∇ × ends = k−1
e,n

∫
∆Γ

en · uΓdΓ

where ∆Γ is the closed contour around ∆S and uΓ is the unit tangent
vector along the contour. The right-hand side is zero. Thus un ·hn = 0
since ∆S is arbitrary. Therefore hn satisfies (9) and the corresponding
eigenvalue is k2

e,n. If hm is another eigenfunction corresponding to em

belonging to category II, then∫
V

hm ·hndv = (ke,mke,n)−1
∫
V

∇× em · ∇ × endv

= (ke,mke,n)−1
∫
S

un×em ·∇ × ends+(ke,n/ke,m)
∫
V

em · endv

= δmn

Therefore the eigenfunctions hn in category II can be derived from the
eigenfunction en in category II. Conversely if hn is in category II, one
can define en by

∇× hn = kh,nen (14)
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and a similar discussion shows that en is an eigenfunction of (4) with
kh,n being the eigenvalue. So the completeness of the two sets are still
guaranteed if the eigenfunctions belonging to category II in {en} and
{hn} are related through either (13) or (14). From now on, (13) and
(14) will be assumed to hold, and ke,n = kh,n will be denoted by kn.
Note that the complete set {en} is most appropriate for the expansion
of electric field, and {hn} for the expansion of the magnetic field.

3. TRANSIENT FIELDS IN A METAL CAVITY FILLED
WITH LOSSY MEDIUM

If the cavity contains an impressed electric current source J and a
magnetic current source Jm, the fields excited by these sources satisfy

∇× H(r, t) = ε
∂E(r, t)

∂t
+ σE + J(r, t), r ∈ V

∇× E(r, t) = −µ
∂H(r, t)

∂t
− Jm(r, t), r ∈ V

(15)

and can be expanded in terms of the vector modal functions as

E(r, t) =
∑
n

en(r)
∫
V

E(r, t) · en(r)dv +
∑
v

ev(r)
∫
V

E(r, t) · ev(r)dv

=
∑
n

Vn(t)en(r) +
∑
v

Vv(t)ev(r)

H(r, t) =
∑
n

hn(r)
∫
V

H(r, t)·hn(r)dv+
∑
τ

hτ (r)
∫
V

H(r, t) · hτ (r)dv

=
∑
n

In(t)hn(r) +
∑
τ

Iτ (t)hτ (r)

(16)

∇× E(r, t) =
∑
n

hn(r)
∫
V

∇× E(r, t) · hn(r)dv

+
∑
τ

hτ (r)
∫
V

∇× E(r, t) · hτ (r)dv

∇× H(r, t) =
∑
n

en(r)
∫
V

∇× H(r, t) · en(r)dv

+
∑
v

ev(r)
∫
V

∇× H(r, t) · ev(r)dv

(17)

where the subscript n denotes the modes belonging to category II, and
the Greek subscript v and τ for the modes belonging to category I or
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III, and

Vn(v)(t) =
∫
V

E(r, t) · en(v)(r)dv

In(τ)(t) =
∫
V

H(r, t) · hn(τ)(r)dv
(18)

Making use of the following calculations∫
V

∇× E · hndv =
∫
V

E · ∇ × hndv +
∫
S

(E × hn) · unds = knVn

∫
V

∇× E · hτdv =
∫
V

E · ∇ × hτdv +
∫
S

(E × hτ ) · unds = 0

∫
V

∇× H · ends =
∫
V

H · ∇ × endv +
∫
S

(H × en) · unds = knIn

∫
V

∇× H · evds =
∫
V

H · ∇ × evdv +
∫
S

(H × ev) · unds = 0

(17) can be written as

∇× E =
∑
n

knVnhn, ∇× H =
∑
n

knInen

Substituting the above expansions into (15) leads to

∑
n

knInen = ε
∑
n

en
∂Vn

∂t
+ ε

∑
v

ev
∂Vv

∂t
+ σ

∑
n

enVn + σ
∑
v

evVv + J

∑
n

knVnhn = −µ
∑
n

hn
∂In
∂t

− µ
∑
τ

hτ
∂Iτ
∂t

− Jm

Thus
∂Vn

∂t
+

σ

ε
Vn − kn

ε
In = −1

ε

∫
V

J · endv

∂Vv

∂t
+

σ

ε
Vv = −1

ε

∫
V

J · evdv

∂In
∂t

+
kn
µ
Vn = − 1

µ

∫
V

Jm · hndv

∂Iτ
∂t

= − 1
µ

∫
V

Jm · hτdv

(19)



Progress In Electromagnetics Research, PIER 78, 2008 229

From the above equations one may obtain

∂2In
∂t2

+ 2γ
∂In
∂t

+ ω2
nIn = ωnS

I
n

∂2Vn

∂t2
+ 2γ

∂Vn

∂t
+ ω2

nVn = ωnS
V
n

(20)

where ωn = knc, γ = σ/2ε and

SI
n = c

∫
V

J · endv −
1

knη

∂

∂t

∫
V

Jm · hndv −
σc

kn

∫
V

Jm · hndv

SV
n = − η

kn

∂

∂t

∫
V

J · endv − c

∫
V

Jm · hndv

To find In and Vn, one may use the retarded Green’s function defined
by




∂2Gn(t, t′)
∂t2

+ 2γ
∂Gn(t, t′)

∂t
+ ω2

nGn(t, t′) = −δ(t− t′)

Gn(t, t′)
∣∣∣
t<t′

= 0
(21)

It is easy to show that the solution of (21) is [8]

Gn(t, t′) = − e−γ(t−t′)√
ω2
n − γ2

sin
√
ω2
n − γ2(t− t′)H(t− t′) (22)

Therefore the general solution of In is given by

In(t) = −
∞∫

−∞
Gn(t, t′)ωnS

I
n(t′)dt′

+
[
Gn(t, t′)

∂In(t′)
∂t′

− In(t′)
∂Gn(t, t′)

∂t′

]t′=∞

t′=−∞
(23)

If the source is turned on at t = 0, one may let Vn(0−) = In(0−) = 0
due to causality. Considering the third equation of (19), the term in
the square bracket vanishes and the above equation reduces to

In(t) = −
∞∫

−∞
Gn(t, t′)ωnS

I
n(t′)dt′
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=
ωn√

ω2
n − γ2

t∫
0−

e−γ(t−t′) sin
√
ω2
n − γ2(t− t′)

×

c ∫

V

J · endv −
1

knη

∂

∂t′

∫
V

Jm · hndv


 dt′ (24)

Similarly

Vn(t) = −
∞∫

−∞
Gn(t, t′)ωnS

V
n (t′)dt′

=
ωn√

ω2
n − γ2

t∫
0−

e−γ(t−t′) sinωn(t− t′)

×

− η

kn

∂

∂t′

∫
V

J · endv − c

∫
V

Jm · hndv


 dt′ (25)

Note that

Vv(t) = −1
ε
e−γt

t∫
0−

dt′eγt
′


∫
V

J · evdv




Iτ (t) = − 1
µ

t∫
0−

dt′
∫
V

Jm · hτdv

(26)

In order to validate the theory, let us consider a cavity excited by an
infinitesimal electric and magnetic dipole at r0 [3, pp. 538]

P = P 0f(t)δ(r − r0)
M = M0f(t)δ(r − r0)

The fields in the cavity satisfy

∇× H(r, t) = ε0
∂E(r, t)

∂t
+ P 0f

′(t)δ(r − r0), r ∈ V

∇× E(r, t) = −µ0
∂H(r, t)

∂t
− M0µ0f

′(t)δ(r − r0), r ∈ V

(27)

Comparing (27) with (15), the following identifications may be made

J(r, t) = P 0f
′(t)δ(r − r0), r ∈ V

Jm(r, t) = M0µ0f
′(t)δ(r − r0), r ∈ V

(28)
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Introducing these into (24) gives

In(t) = cP 0 · en(r0)
t∫

0−

sinωn(t− t′)f ′(t′)dt′

−cµ0

η
M0 · hn(r0)

t∫
0−

cosωn(t− t′)f ′(t′)dt′

= cωnP 0 · en(r0)
t∫

0−
cosωn(t− t′)f(t)dt′

−M0 · hn(r0)


f(t) − ωn

t∫
0−

sinωn(t− t′)f(t′)dt′



(29)

If the excitation waveform is sinusoidal which is turned on at t = 0,
i.e., f(t) = H(t) sinωt, then (29) may be written as

In(t) =
−ω

ω2 − ω2
n

[cωnP 0 · en(r0) cosωt + ωM0 · hn(r0) sinωt]

+
ω

ω2−ω2
n

[cωnP 0 · en(r0) cosωt+ωM0 · hn(r0) sinωnt] (30)

Similarly one can obtain the expressions of Vn(t).
From the time-harmonic theory in which f(t) = sinωt, one would

obtain [3, 7.130b]

In(t) =
−ω

ω2 − ω2
n

[cωnP 0 · en(r0) cosωt + ωM0 · hn(r0) sinωt] (31)

for a lossless cavity. Thus the second term of the right-hand side of
(30) does not occur in (31). Also note that (31) is sinusoidal but (30)
is not. Furthermore (30) does not approach to (31) as t → ∞, which
contradicts our usual understanding. In fact, the response (30) based
on the time-domain analysis is not sinusoidal if the frequency of the
excitation sinusoidal waveform does not coincide with any resonant
frequencies, whereas the response (31) based on the time-harmonic
theory is always sinusoidal. Therefore the time-harmonic analysis for
a metal cavity suffers a theoretical drawback that its solution does not
correspond to any practical situation in which a source is always turned
on at a finite instant of time. Apparently this theoretical drawback is
due to the lack of causality in the time-harmonic theory.

It can also be seen from (31) that In(t) becomes singular when
ω approaches ωn, which implies that the fields are infinite everywhere
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inside the cavity. This phenomenon is discussed in Bladel’s book [5]
and is compared to a lossless resonant LC network. In Collin’s book
[3], these singularities do not occur because of the introduction of losses
in the metal cavity. However, the time-domain solution (30) has no
singularities even for a lossless cavity. In fact (30) may be rewritten as

In(t) =
[
ωωnt

ω + ωn
cP 0 · en(r0) sin

ω + ωn

2
t

− ω2t

ω + ωn
M0 · hn(r0) cos

ω + ωn

2
t

] sin
ω − ωn

2
t

ω − ωn

2
t

As ω approaches ωn, the above becomes

In(t) =
ωnt

2
[cP 0 · en(r0) sinωnt− M0 · hn(r0) cosωnt] (32)

for a finite time t, and no singularities appear in (32). The
above phenomenon can be explained by the uniqueness theorem of
electromagnetic field. For a bounded region (such as a cavity), the
time-harmonic Maxwell equations have a unique solution if and only if
the region is filled with lossy medium, while the time-domain Maxwell
equations always have a unique solution even if the medium is lossless
[9, 10]. Therefore introducing losses in the metal cavity is required by
the time-harmonic electromagnetic theory, which guarantees that the
solution is unique and has no singularities.

Therefore the time-domain solution gives a more reasonable
picture for the physical process inside a metal cavity. More examples
in Section 5 will demonstrate this point.

4. TRANSIENT FIELDS IN A WAVEGUIDE CAVITY
FILLED WITH LOSSY MEDIUM

The evaluation of modal functions in an arbitrary metal cavity is
not an easy task. When the metal cavity consists of a section of a
uniform metal waveguide, the analysis of the transient process in the
metal cavity can be carried out by means of the time-domain theory
of waveguide [6].

4.1. Field Expansions in a Waveguide Filled with Lossy
Medium

Consider a waveguide cavity with a perfect electric wall of length L,
as shown in Figure 2. The transient electromagnetic fields inside the
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L 2z  1z  

nu

z

J  mJ  Ω  

Figure 2. A metal cavity formed by a waveguide of cross-section Ω.

waveguide cavity with current source J and Jm can be expressed as
[6]

E(r, t) =
∞∑
n=1

vn(z, t)etn(ρ) + uz

∞∑
n=1

∇ · etn(ρ)
kcn

ezn

H(r, t) =
∞∑
n=1

in(z, t)uz × etn(ρ) + uz
1√
Ω

∫
Ω

uz · H√
Ω

+
∞∑
n=1

∇× etn(ρ)
kcn

hzn

(33)

where ρ = (x, y) is the position vector in the waveguide cross-section
Ω; etn are the transverse vector modal functions, and

vn(z, t) =
∫
Ω

E · etndΩ, in(z, t) =
∫
Ω

H · uz × etndΩ

hzn(z, t) =
∫
Ω

H ·
(∇× etn

kcn

)
dΩ, ezn(z, t) =

∫
Ω

uz · E
(∇ · etn

kcn

)
dΩ

Similar to the time-domain theory of waveguide filled with lossless
medium [6], the modal voltage and current for TEM mode satisfy the
one-dimensional wave equation

∂2vTEM
n

∂z2
− 1

c2
∂2vTEM

n

∂t2
− σ

η

c

∂vTEM
n

∂t

=
η

c

∂

∂t

∫
Ω

J · etndΩ − ∂

∂z

∫
Ω

Jm · uz × etndΩ

∂2iTEM
n

∂z2
− 1

c2
∂2iTEM

n

∂t2
− σ

η

c

∂iTEM
n

∂t

= σ

∫
Ω

Jm ·uz×etndΩ− ∂

∂z

∫
Ω

J · etndΩ+
1
cη

∂

∂t

∫
Ω

Jm ·uz×etndΩ (34)
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Once vTEM
v (or iTEM

n ) is determined, iTEM
n (or vTEM

n ) can be
determined by time integration of vTEM

n (or iTEM
n ). The modal voltage

vTE
n satisfies the following hyperbolic equation

∂2vTE
n

∂z2
− 1

c2
∂2vTE

n

∂t2
− σ

η

c

∂vTE
n

∂t
− k2

cnv
TE
n

=
η

c

∂

∂t

∫
Ω

J · etndΩ − ∂

∂z

∫
Ω

Jm · uz × etndΩ

+kcn

∫
Ω

(uz · Jm)
(

uz · ∇ × etn

kcn

)
dΩ (35)

When σ = 0, the above equation reduces to Klein-Gordon equation.
(35) will be called modified Klein-Gordon equation. The modal current
iTE
n can be determined by a time integration of ∂vTE

n /∂z

iTE
n (z, t) = −η

c

t∫
−∞

∂vTE
n (z, t′)
∂z

dt′

−η

c

t∫
−∞




∫
Ω

Jm(r, t′) · [uz × etn(ρ)]dΩ(ρ)


 dt′ (36)

The modal current iTM
n also satisfies the modified Klein-Gordon

equation.

∂2iTM
n

∂z2
− 1

c2
∂2iTM

n

∂t2
− σ

η

c

∂iTM
n

∂t
− k2

cni
TM
n

= σ

∫
Ω

Jm · uz × etndΩ − ∂

∂z

∫
Ω

J · etndΩ

+
1
cη

∂

∂t

∫
Ω

Jm · uz × etndΩ − kcn

∫
Ω

uz · J
(∇ · etn

kcn

)
dΩ (37)

The modal voltage vTM
n can then be determined by a time integration

of ∂iTM
n /∂z

vTM
n (z, t) = −cη

t∫
−∞

∂iTM
n (z, t′)
∂z

dt′ − cη

t∫
−∞


∫

Ω

J(r, t′) · etn(ρ)dΩ(ρ)


 dt′

(38)
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4.2. Retarded Green’s Function of Modified Klein-Gordon
Equation

Since the tangential electric field on the electric conductor must be
zero, the time-domain voltage satisfies the homogeneous Dirichlet
boundary conditions

vn(z, t)|z=z1 = vn(z, t)|z=z2 = 0 (39)

Making use of the following relation [6]

−∂in(z, t)
∂z

+ kcnhzn(z, t) =
1
cη

∂vn(z, t)
∂t

+ σvn(z, t)

+
∫
Ω

J(ρ, z, t) · etn(ρ)dΩ(ρ)

and considering the boundary condition that the normal component of
the magnetic field on an electric conductor must be zero, the time-
domain current must satisfy the homogeneous Neumann boundary
conditions

∂in(z, t)
∂z

∣∣∣∣
z=z1

=
∂in(z, t)

∂z

∣∣∣∣
z=z2

= 0 (40)

In order to solve (34), (35) and (37) subject to the boundary conditions
(39) and (40), one may introduce the following retarded Green’s
functions for the modified Klein-Gordon equation


(
∂2

∂z2
− 1

c2
∂2

∂t2
− σ

η

c

∂

∂t
− k2

cn

)
Gv

n(z, t; z′, t′) = −δ(z − z′)δ(t− t′)

Gv
n(z, t; z′, t′)|t<t′ = 0

Gv
n(z, t; z′, t′)|z=z1 = Gv

n(z, t; z′, t′)|z=z2 = 0
(41)

and


(
∂2

∂z2
− 1

c2
∂2

∂t2
− σ

η

c

∂

∂t
− k2

cn

)
Gi

n(z, t; z′, t′) = −δ(z − z′)δ(t− t′)

Gi
n(z, t; z′, t′)|t<t′ = 0

∂Gi
n(z, t; z′, t′)

∂z

∣∣∣∣
z=z1

=
∂Gi

n(z, t; z′, t′)
∂z

∣∣∣∣
z=z2

= 0

(42)
for the modal voltage and modal current respectively. Note that the
retarded Green’s functions satisfy the causality condition. Taking the
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Fourier transform with respect to time

G̃v,i
n (z, ω; z′, t′) =

∞∫
−∞

Gv,i
n (z, t; z′, t′)e−jωtdt

gives (
∂2

∂z2
+ β2

n

)
G̃v,i

n (z, ω; z′, t′) = −e−jωt′δ(z − z′) (43)

where β2
n = (ω/c)2 −k2

cn− jσηω/c. The above equations can be solved
by the method of eigenfunctions, i.e.,

G̃v
n(z, ω; z′, t′) =

∞∑
m=1

gvm

√
2
L

sin
mπ

L
(z − z1)

G̃i
n(z, ω; z′, t′) =

∞∑
m=1

gim

√
εm
L

cos
mπ

L
(z − z1)

where L = z2 − z1, and εm = 1(m = 0), εm = 2(m �= 0). Substituting
these into (43) leads to

gvm =
−1

β2
n − (mπ/L)2

√
2
L

sin
mπ

L
(z′ − z1)e−jωt′

gim =
−1

β2
n − (mπ/L)2

√
εm
L

cos
mπ

L
(z′ − z1)e−jωt′

Thus

G̃v
n(z, ω; z′, t′) =

∞∑
m=1

−1
β2
n−(mπ/L)2

2
L

sin
mπ

L
(z−z1) sin

mπ

L
(z′−z1)e−jωt′

G̃i
n(z, ω; z′, t′) =

∞∑
m=0

−1
β2
n−(mπ/L)2

εm
L

cos
mπ

L
(z−z1) cos

mπ

L
(z′−z1)e−jωt′

Taking the inverse Fourier transform

Gv,i
n (z, t; z′, t′) =

1
2π

∞∫
−∞

G̃v,i
n (z, ω; z′, t′)ejωtdω

one may obtain

Gv
n(z, t; z′, t′) = −

∞∑
m=1

c2

πL
sin

mπ

L
(z − z1) sin

mπ

L
(z′ − z1)
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×
∞∫

−∞

ejω(t−t′)dω

ω2 − (ckcn)2 − (mπc/L)2 − jωσ/ε

Gi
n(z, t; z′, t′) = −

∞∑
m=0

εmc
2

2πL
cos

mπ

L
(z − z1) cos

mπ

L
(z′ − z1)

×
∞∫

−∞

ejω(t−t′)dω

ω2 − (ckcn)2 − (mπc/L)2 − jωσ/ε

The integral in the summation can be evaluated by the residue theorem
[6]. The results are

Gv
n(z, t; z′, t′) =

∞∑
m=1

2c
L

sin
mπ

L
(z − z1) sin

mπ

L
(z′ − z1)

×e−γ(t−t′)
sin

[
c(t− t′)

√
k2
cn + (mπ/L)2 − γ2

]
√
k2
cn + (mπ/L)2 − γ2

H(t− t′)

(44)

Gi
n(z, t; z′, t′) =

∞∑
m=0

εmc

L
cos

mπ

L
(z − z1) cos

mπ

L
(z′ − z1)

×e−γ(t−t′)
sin

[
c(t− t′)

√
k2
cn + (mπ/L)2 − γ2

]
√
k2
cn + (mπ/L)2 − γ2

H(t− t′)

(45)

where γ = σ/2ε. If one of the ends of the waveguide cavity extends to
infinity, say, z2 → ∞, the discrete values mπ/L become a continuum.
In this case, (44) and (45) can be rewritten as

Gv
n(z, t; z′, t′)

∣∣∣
z2→∞

= − c

π
e−γ(t−t′)

×
∞∫
0

[cos k(z + z′ − 2z1) − cos k(z − z′)]
sin

[
c(t− t′)

√
k2
cn + k2 − γ2

]
√
k2
cn + k2 − γ2

dk

Gi
n(z, t; z′, t′)

∣∣∣
z2→∞

=
c

π
e−γ(t−t′)

×
∞∫
0

[cos k(z + z′ − 2z1) + cos k(z − z′)]
sin

[
c(t− t′)

√
k2
cn + k2 − γ2

]
√
k2
cn + k2 − γ2

dk
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where k = ω/c. These integrations may be carried out by using

∞∫
0

(
sin q

√
x2 + a2

√
x2 + a2

)
cos bxdx =

π

2
J0

(
a
√
q2 − b2

)
H(q − b)

a > 0, q > 0, b > 0

and the results are

eγ(t−t′)Gv
n(z, t; z′, t′)|z2→∞ =

− c

2
J0

[(
k2
cn − γ2

)1/2 √
c2(t− t′)2 − |z + z′ − 2z1|2

]
×H[c(t− t′) − |z + z′ − 2z1|]

+
c

2
J0

[(
k2
cn − γ2

)1/2 √
c2(t− t′)2 − |z − z′|2

]
H[c(t− t′) − |z − z′|]

(46)

eγ(t−t′)Gi
n(z, t; z′, t′)|z2→∞ =

c

2
J0

[(
k2
cn − γ2

)1/2 √
c2(t− t′)2 − |z + z′ − 2z1|2

]
×H[c(t− t′) − |z + z′ − 2z1|]

+
c

2
J0

[(
k2
cn − γ2

)1/2 √
c2(t− t′)2 − |z − z′|2

]
H[c(t− t′) − |z − z′|]

(47)

4.3. Solution of Inhomogeneous Klein-Gordon Equation

The retarded Green’s functions can be used to solve the modified
Klein-Gordon equation. Consider the inhomogeneous Klein-Gordon
equations(

∂2

∂z2
− 1

c2
∂2

∂t2
− σ

η

c

∂

∂t
− k2

cn

)
vn(z, t) = f(z, t), z1 < z < z2

(
∂2

∂z2
− 1

c2
∂2

∂t2
− σ

η

c

∂

∂t
− k2

cn

)
in(z, t) = g(z, t), z1 < z < z2

with the boundary conditions (39) and (40). It is easy to show that
the solutions of the above equations are
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vn(z, t) = −
z2∫

z1

dz′
∞∫

−∞
f(z′, t′)Gv

n(z, t; z′, t′)dt′, z ∈ (z1, z2)

in(z, t) = −
z2∫

z1

dz′
∞∫

−∞
g(z′, t′)Gi

n(z, t; z′, t′)dt′, z ∈ (z1, z2)

(48)

Thus the solutions of (34), (35) and (37) can be obtained from (48) as

vTE
n (z, t) = −η

c

z2∫
z1

dz′
∞∫

−∞


 ∂

∂t′

∫
Ω

J(ρ′, z′, t′) · etn(ρ′)dΩ(ρ′)




×Gv
n(z, t; z′, t′)dt′

−
z2∫

z1

dz′
∞∫

−∞


∫

Ω

Jm(ρ′, z′, t′) · uz × etn(ρ′)dΩ(ρ′)


 ∂Gv

n(z, t; z′, t′)
∂z′

dt′

−kcn

z2∫
z1

dz′
∞∫

−∞




∫
Ω

uz · Jm(ρ′, z′, t′)
[
uz · ∇ × etn(ρ′)

kcn

]
dΩ(ρ′)




×Gv
n(z, t; z′, t′)dt′ (49)

iTM
n (z, t) = −

z2∫
z1

dz′
∞∫

−∞


 ∫

Ω

J(ρ′, z′, t′)·etn(ρ′)dΩ(ρ′)


∂Gi

n(z, t; z′, t′)
∂z′

dt′

− 1
cη

z2∫
z1

dz′
∞∫

−∞


 ∂

∂t′

∫
Ω

Jm(ρ′, z′, t′) · uz×etn(ρ′)dΩ(ρ′)


Gi

n(z, t; z′, t′)dt′

+kcn

z2∫
z1

dz′
∞∫

−∞




∫
Ω

uz · J(ρ′, z′, t′)
[∇ · etn(ρ′)

kcn

]
dΩ(ρ′)


Gi

n(z, t; z′, t′)dt′

(50)

In deriving the above expressions it has been assumed that all sources
are confined in (z1, z2). It should be notified that if the magnetic
current Jm approaches to z1 or z2 so that it is tightly pressed on the
electric wall z = z1 or z = z2, the time-domain voltage and current
will not satisfy the homogeneous boundary conditions (39) and (40) at
z = z1 or z = z2.
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5. APPLICATIONS

The time-domain theory developed above may be used to study the
transient process inside a cavity resonator. It will be shown that the
time-domain response of the cavity to an arbitrary excitation waveform
turned on at a finite instant of time will be severely distorted. For
example, the response of a cavity to a sinusoidal excitation turned on
at a finite instant of time is not sinusoidal in general, which is totally
different from the prediction of time-harmonic theory. To obtain a
sinusoidal oscillation in the cavity, the frequency of the excitation
sinusoidal wave must coincide with one of the resonant frequencies.

5.1. A Shorted Rectangular Waveguide

Let us investigate the transient process in a shorted rectangular
waveguide excited by a line current extending across the waveguide
centered at x = x0 = a/2, z = z0

J(r, t) = uyδ(x− x0)δ(z − z0)f(t) (51)

as shown in Figure 3. By the symmetry of the structure and excitation,
only TEn0 mode will be excited, which are

etn(x, y) = eTE
n0 (x, y) = −uy

(
2
ab

)1/2

sin
nπx

a
, n = 1, 2, 3 · · · (52)

with kcn = nπ/a. It follows from (46) and (49) that

vTE
n (z, t) =

bη

2

(
2
ab

)1/2

sin
nπ

a
x0

×




t−|z−z0|/c∫
−∞

df(t′)
dt′

J0

[
kcnc

√
(t− t′)2 − |z − z0|2/c2

]
dt′

o 

TE
nv  

TE
ni  

o 

y 

z 

0z  

y 

a 

b 

x J 

Figure 3. A shorted rectangular waveguide excited by a centered
current source.
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−
t−|z+z0|/c∫

−∞

df(t′)
dt′

J0

[
kcnc

√
(t− t′)2 − |z + z0|2/c2

]
dt′




Assuming that f(t) = H(t) sinωt, the time-domain voltage may be
written as

vTE
n (z, t) =

bη

2

(
2
ab

)1/2

ka sin
nπ

a
x0

×




ct/a∫
|z−z0|/a

cos ka(ct/a− u)J0

[
kcna

√
u2 − |z − z0|2/a2

]
du

−
ct/a∫

|z+z0|/a

cos ka(ct/a− u)J0

[
kcna

√
u2 − |z + z0|2/a2

]
du




The time-domain response vTE
n (z, t) may be divided into the sum of a

steady-state part and a transient part

vTE
n (z, t) = vTE

n (z, t)
∣∣∣
steady

+ vTE
n (z, t)

∣∣∣
transient

where

vTE
n (z, t)

∣∣∣
steady

=
bη

2

(
2
ab

)1/2

ka sin
nπ

a
x0

×




∞∫
|z−z0|/a

cos ka(ct/a− u)J0

[
kcna

√
u2 − |z − z0|2/a2

]
du

−
∞∫

|z+z0|/a

cos ka(ct/a− u)J0

[
kcna

√
u2 − |z + z0|2/a2

]
du




vTE
n (z, t)

∣∣∣
transient

= −bη

2

(
2
ab

)1/2

ka sin
nπ

a
x0

×




∞∫
ct/a

cos ka(ct/a− u)J0

[
kcna

√
u2 − |z − z0|2/a2

]
du

−
∞∫

ct/a

cos ka(ct/a− u)J0

[
kcna

√
u2 − |z + z0|2/a2

]
du



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The transient part approaches to zero as t → ∞. The integrals in the
steady part can be carried out by use of the following calculations [11]

∞∫
a

J0

(
b
√
x2−a2

)
sin cxdx =

{0, 0 < c < b

cos
(
a
√
c2−b2

)
/
√
c2−b2, 0 < b < c

∞∫
a

J0

(
b
√
x2−a2

)
cos cxdx =




exp
(
−a

√
b2−c2

)
/
√
b2−c2, 0 < c < b

− sin
(
a
√
c2−b2

)
/
√
c2−b2, 0 < b < c

Thus

vTE
n (z, t)

∣∣∣
steady

=
bη

2

(
2
ab

)1/2

ka sin
nπ

a

1√
|(ka)2 − (kcna)2|

·




sin
(
ka

ct

a
− |z − z0|

a

√
(ka)2 − (kcna)2

)

− sin
(
ka

ct

a
− |z + z0|

a

√
(ka)2 − (kcna)2

)
, k > kcn

cos
(
ka

ct

a

)
exp

[
−|z − z0|

a

√
(kcna)2 − (ka)2

]

− cos
(
ka

ct

a

)
exp

[
−|z + z0|

a

√
(kcna)2 − (ka)2

]
k < kcn

In the region 0 < z < z0, the above equation may be rewritten as

vTE
n (z, t)

∣∣∣
steady

=
1√
2

(
b

a

)1/2

sin
nπ

2
ηk

βn

·




2 sin(βnz) cos(ωt− βnz0), k > kcn
cos(ωt) exp[βn(z − z0)]−
cos(ωt) exp[−βn(z + z0)], k < kcn

where βn = (|k2 − k2
cn|)1/2. Therefore the time-domain voltage for the

TEn0 mode in the shorted waveguide is a standing wave if the operating
frequency is higher than cut-off frequency of the TEn0 mode, which is
a well-known result in time-harmonic theory.

The time-domain current can be determined by (36)

iTE
n (z, t) =

(
2b
a

)1/2

sin
nπ

2

×
[
−1

2
sinω(t− |z + z0|/c) −

1
2

sinω(t− |z − z0|/c)
]
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+
(

2b
a

)1/2

sin
nπ

2

×



kcn(z+z0)

2

t−|z+z0|/c∫
0

J1

[
kcnc

√
(t− t′)2 − |z + z0|2/c2

]
√

(t− t′)2 − |z + z0|2/c2
sinωt′dt′

− kcn(z−z0)
2

t−|z−z0|/c∫
0

J1

[
kcnc

√
(t− t′)2 − |z − z0|2/c2

]
√

(t− t′)2 − |z − z0|2/c2
sinωt′dt′




The steady state part of iTE
n (z, t) is given by

iTE
n (z, t)

∣∣∣
steady

=
(

2b
a

)1/2

sin
nπ

2

×
[
−1

2
sinω(t− |z + z0|/c) −

1
2

sinω(t− |z − z0|/c)
]

+
(

2b
a

)1/2

sin
nπ

2

×



kcn(z+z0)

2

∞∫
|z+z0|/c

J1

[
kcnc

√
u2 − |z + z0|2/c2

]
√
u2 − |z + z0|2/c2

sinω(t− u)du

− kcn(z−z0)
2

∞∫
|z−z0|/c

J1

[
kcnc

√
u2 − |z − z0|2/c2

]
√
u2 − |z − z0|2/c2

sinω(t− u)du




Assuming that k > kcn and making use of the following calculations

∞∫
a

sin cx√
x2 − a2

Jv
(
b
√
x2 − a2

)
dx =

π

2
Jv/2

[
a

2

(
c−

√
c2 − b2

)]
J−v/2

[
a

2

(
c +

√
c2 − b2

)]
∞∫
a

cos cx√
x2 − a2

Jv
(
b
√
x2 − a2

)
dx =

−π

2
Jv/2

[
a

2

(
c−

√
c2 − b2

)]
N−v/2

[
a

2

(
c +

√
c2 − b2

)]
(a > 0, 0 < b < c)
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one may obtain

iTE
n (z, t)

∣∣∣
steady

= − 1√
2

(
b

a

)1/2

2 sin
nπ

2
cos(βnz) sin(ωt− βnz0)

Let V TE
n (z) and ITE

n (z) be the phasors of vTE
n (z, t)|steady and

iTE
n (z, t)|steady respectively, then

V TE
n (z) =

1√
2

(
b

a

)1/2 ηk

βn
2 sin

nπ

2
sin(βnz)e−jβnz0 , k > kcn

ITE
n (z) = j

1√
2

(
b

a

)1/2

2 sin
nπ

2
cos(βnz)e−jβnz0 , k > kcn

Since the current is assumed to be in positive z-direction, the
impedance at z ∈ (0, z0) is thus given by

Zn(z) =
V TE
n (z)

−ITE
n (z)

= j
ηk

βn
tan(βnz), k > kcn

which is a well-known result and validates the time-domain theory.

5.2. A Rectangular Waveguide Cavity

Let the shorted waveguide shown in Figure 3 be closed by a perfect
conducting wall at z = L with L > z0 (Figure 4) and the excitation
source be given by (51). By symmetry, only TEn0 mode will be excited.
It follows from (44) and (49) that

vTE
n (z, t) =

2η
L

(
2b
a

)1/2

sin
nπx0

a

∞∑
m=1

sin
mπ

L
z sin

mπ

L
z0√

(nπ/a)2 + (mπ/L)2

×
∞∫

−∞

df(t′)
dt′

sin
[
c(t− t′)

√
(nπ/a)2+(mπ/L)2

]
H(t− t′)dt′

(53)

L o 

y 

z 

0z  

y 

a 

b 

x J 

Figure 4. A rectangular waveguide cavity excited by a current source.
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Again if it is assumed that f(t) = H(t) sinωt, the above expression
may be written as

vTE
n (z, t) =

2ηω
L

(
2b
a

)1/2

sin
nπx0

a

∞∑
m=1

sin
mπ

L
z sin

mπ

L
z0√

(nπ/a)2 + (mπ/L)2

×
t∫

−∞
sin

[
c(t− t′)

√
(nπ/a)2+(mπ/L)2

]
cosωt′dt′

= −2ηk
L

(
2b
a

)1/2

sin
nπx0

a

∞∑
m=1

sin
mπ

L
z sin

mπ

L
z0

×
cos kct− cos

[
ct

√
(nπ/a)2+(mπ/L)2

]
k2 − (nπ/a)2+(mπ/L)2

(54)

where k = ω/c. The electromagnetic field is given by (33)

E(r, t) = uyEy =
∞∑
n=1

vTE
n (z, t)eTE

n0 (x, y)

= uy
4ηk
La

∞∑
n=1

∞∑
m=1

sin
nπx

a
sin

nπx0

a
sin

mπ

L
z sin

mπ

L
z0

×
cos kct− cos

[
ct

√
(nπ/a)2+(mπ/L)2

]
k2 − (nπ/a)2+(mπ/L)2

(55)

0 10 20 30 40 50 60
0.5

0

0.5

ctoa

yaE

η

0 0/ ( 0.5 , 0.75 , 0.5 )ct a x a z a x z a= = = =  

Figure 5. Electric field excited by a sinusoidal wave f(t) = H(t) sinωt
when k = ω/c �=

√
(nπ/a)2 + (mπ/L)2 (ka = π).
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where eTE
n0 (x, y) are given by (52). As can be seen from (54) and

(55), one cannot separate the response of a closed cavity into a
transient part and a steady-state part. Figure 5 shows the normalized
electric field aE(r, t)/η at x = 0.5a, z = 0.75a, excited by a source
defined by (51) with sinusoidal waveform f(t) = H(t) sinωt with
a = b = L. It is assumed that k is below any resonant wavenumbers√

(nπ/a)2 + (mπ/L)2 (m,n ≥ 1) with k = π. It can be seen from
the plot that the electric field does not approach to a pure sinusoidal
wave as t → ∞. It should be noted that (54), (55) are finite as k
approaches to any of the resonant wavenumbers

√
(nπ/a)2 + (mπ/L)2.

For example, when k approaches to
√

(π/a)2 + (π/L)2, the singular
term for (n,m) = (1, 1) in (55) becomes

cos kct− cos
[
ct

√
(π/a)2 + (π/L)2

]
k2 − (π/a)2 + (π/L)2

= −
ct sin

(
ct

√
(π/a)2 + (π/L)2

)
2
√

(π/a)2 + (π/L)2
(56)

which is a finite number for a finite t.
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0 0/ ( 0.5 , 0.75 , 0.5 )ct a x a z a x z a= = = =  

Figure 6. Electric field exited by a sinusoidal wave f(t) = H(t) sinωt
when k = ω/c =

√
(π/a)2 + (π/L)2.

Figure 6 shows the normalized electric field aE(r, t)/η at x =
0.5a, z = 0.75a, excited by a sinusoidal wave f(t) = H(t) sinωt when
k =

√
(π/a)2 + (π/L)2 with a = b = L. In this case a sinusoidal wave

will be gradually built up as t → ∞. Therefore the response of a metal
cavity is a sinusoidal wave if and only if the frequency of the exciting
sinusoidal wave coincides with one of the resonant frequencies of the
metal cavity.
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If the excitation waveform is a unit step function, i.e., f(t) = H(t),
(53) becomes

vTE
n (z, t) =

2η
L

(
2b
a

)1/2

sin
nπx0

a

∞∑
m=1

sin
mπ

L
z sin

mπ

L
z0

×
sin

[
ct

√
(nπ/a)2+(mπ/L)2

]
√

(nπ/a)2+(mπ/L)2
(57)

and the electric field is

E(r, t) = uyEy = −uy
4η
La

×
∞∑
n=1

∞∑
m=1

sin
nπx

a
sin

nπx0

a
sin

mπ

L
z sin

mπ

L
z0

×
sin

[
ct

√
(nπ/a)2+(mπ/L)2

]
√

(nπ/a)2+(mπ/L)2
(58)

Figure 7 shows the normalized electric field aE(r, t)/η at x = 0.5a, z =
0.75a, excited by the unit step waveform. Note that the response of
the metal cavity is not a unit step function.
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0
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E2 ctoa( )

ctoa

 

yaE

η
 

0 0/ ( 0.5 , 0.75 , 0.5 )ct a x a z a x z a= = = =  

Figure 7. Electric field excited by a unit step waveform f(t) = H(t).

5.3. A Coaxial Waveguide Cavity

A coaxial waveguide cavity of length L consisting of an inner conductor
of radius a and an outer conductor of radius b is shown in Figure 8. Let
the coaxial waveguide be excited by a magnetic ring current located at
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z = z0

Jm(r, t) = uθf(t)δ(z − z0)δ(ρ− ρ0), a < ρ0 < b, 0 < z0 < L

where (ρ, ϕ, z) are the polar coordinates and uθ is the unit vector
in θ direction. According to the symmetry, only TEM mode and
those TM0q modes that are independent of ϕ will be excited. The
orthonormal vector mode functions for these modes are given by [12]

2a2b

o

a

y

x
J

b

0
L zz

Figure 8. Cross-section of a coaxial waveguide.

kc1 = 0, et1(ρ, ϕ) = uρe1(ρ), e1(ρ) =
1

ρ
√

2π ln c1
kcn =

χn

a
, etn(ρ, ϕ) = uρen(ρ)

en(ρ) =
√
π

2
χn

a

J1(χnρ/a)N0(χn) −N1(χnρ/a)J0(χn)√
J2

0 (χn)/J2
0 (c1χn) − 1

, n ≥ 2

where c1 = b/a, uρ is the unit vector in ρ direction, and χn

is the nth nonvanishing root of the eqauation J0(χnc1)N0(χn) −
N0(χnc1)J0(χn) = 0. It follows from (45) and (50) that

iTM
n (z, t) = −2π

cη
en(ρ0)ρ0

∞∫
−∞

df(t′)
dt′

Gi
n(z, t; z0, t

′)dt′

= − 2π
ηL

ρ0en(ρ0)
∞∑

m=0

εm
cos

mπ

L
z cos

mπ

L
z0√

(χn/a)2 + (mπ/L)2

×
t∫

−∞

df(t′)
dt′

sin
[
c(t− t′)

√
(χn/a)2 + (mπ/L)2

]
dt′ (59)
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Let f(t) = H(t) sinωt, the above expression may be written as

iTM
n (z, t) = −2kcπ

ηL
ρ0en(ρ0)

∞∑
m=0

εm
cos

mπ

L
z cos

mπ

L
z0√

(χn/a)2 + (mπ/L)2

×
t∫

0

sin
[
c(t− t′)

√
(χn/a)2 + (mπ/L)2

]
cosωt′dt′

=
2kπ
ηL

ρ0en(ρ0)
∞∑

m=0

εm cos
mπ

L
z cos

mπ

L
z0

×
cos kct− cos

[
c(t− t′)

√
(χn/a)2 + (mπ/L)2

]
k2 − (χn/a)2 + (mπ/L)2

(60)
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Figure 9. Magnetic field exited by a sinusoidal wave f(t) = H(t) sinωt
when ka = 3 (k �=

√
(χn/a)2 + (mπ/L)2).

The magnetic field H(r, t) = uθHθ in the coaxial waveguide
can be determined from (33). Figure 9 shows the magnetic field at
ρ = (a + b)/2 and z = 3a when ka = 3 with the assumption that
b = 2a, L = 2b, ρ0 = (a + b)/2, z0 = L/2. In this case k is not equal
to any resonant wavenumbers

√
(χ/a)2 + (mπ/L)2 (m,n ≥ 1) and the

field response is not a sinusoidal wave. When the frequency of the
excitation waveform approaches to one of the resonant frequencies, say
ka = χ2, a sinusoidal wave will gradually build up inside the coaxial
waveguide cavity as shown in Figure 10.
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Figure 10. Magnetic field exited by a sinusoidal wave f(t) =
H(t) sinωt when ka = χ2 = 3.123.
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Figure 11. Magnetic field exited by a sinusoidal wave f(t) = H(t).

If the coaxial waveguide cavity is excited by unit step waveform
f(t) = H(t), (59) may be written as

iTM
n (z, t) = − 2π

ηL
ρ0en(ρ0)

∞∑
m=0

εm
cos

mπ

L
z cos

mπ

L
z0√

(χn/a)2 + (mπ/L)2

× sin
[
ct

√
(χn/a)2 + (mπ/L)2

]

The field response is shown in Figure 11, and is no longer a unit step
waveform.
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6. CONCLUSION

This paper provides a thorough discussion on the time-domain theory
of metal cavities. A rigorous proof of the completeness of the vector
modal functions inside an arbitrary metal cavity has been presented on
the basis of the theory of symmetric operators. The major topic of this
paper is the waveguide cavity resonator, which has been examined by
using the time-domain theory of the waveguide developed previously.
The fields inside the waveguide cavity have been expanded in terms of
the vector modal functions of the corresponding waveguide, and the
field expansion coefficients are shown to satisfy the modified Klein-
Gordon equations subject to the homogeneous Dirichlet or Neumann
boundary condition, which can then be solved by the method of
retarded Green’s function. Such an approach guarantees that the
solutions satisfy the causality condition. Some numerical examples
have been presented to demonstrate the time-domain theory. It has
been shown that, for a closed cavity, the time-domain response to a
sinusoidal waveform turned on at a finite instant of time is generally not
sinusoidal even when the time tends to infinity. A sinusoidal response
can develop inside the cavity only when the frequency of the excitation
sinusoidal wave coincides with one of the resonant frequencies of the
metal cavity.

The traditional time-harmonic theory, however, always yields a
sinusoidal response if the excitation waveform is sinusoidal. Therefore
the time-harmonic theory fails to give a correct theoretical prediction
for a closed cavity whenever the source is turned on at a finite instant
of time which corresponds to all practical situations. In addition the
singularities occur in the time-harmonic theory for a lossless metal
cavity if the frequency of the excitation source coincides with one of
the resonant frequencies. In this case, the field distributions are infinite
everywhere inside the cavity, leading to an awkward situation. On the
other hand, the time-domain theory always gives a finite solution and
is thus more appropriate to describe what happens in a closed metal
cavity, which is the foundation for a number of important applications
in microwave engineering and is also helpful in studying various cavity-
related problems [13–20].
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