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Abstract—A microwave technique is proposed to measure the
permittivity function of inhomogeneous dielectric walls. The
measured reflection or transmission coefficients are used to extract the
permittivity function of the dielectric walls. To solve the problem an
optimization-based procedure is used. The usefulness of the proposed
method is verified using some examples.

1. INTRODUCTION

Microwave nondestructive evaluation (NDE) is a widely used method
to test the internal integrity of many materials such as concrete
(used in bridges, buildings, dams, tunnels, etc.), asphalt (used in
pavements), composite materials, plastics, epoxy, and rubber (used
in seals) [1]. Microwaves, in contrast to ultrasound, couple very well
into these types of materials, and do not require contacting transducers
or coupling media. Microwave NDE techniques, when combined with
inverse scattering imaging methods, can potentially generate higher
resolution images with deeper penetration than the thermal and eddy-
current imaging techniques [1]. Many microwave techniques have
been presented to measure the dielectric constant of dielectrics. The
lumped circuit techniques [2], the cavity perturbation technique [3–
5], the free-space techniques [6] and the transmission line techniques
[7–9] are the most important techniques. However these techniques
are presented only for homogeneous dielectrics. In this paper we
generalize the transmission line techniques to measure the permittivity
function of inhomogeneous dielectric walls. The measured reflection or
transmission coefficients are used to extract the permittivity function
of the dielectric wall. In fact, we have to solve a one-dimensional
inverse scattering problem [10]. To solve this problem, the electric
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permittivity function is expanded in a truncated Fourier series, first.
Then, the optimum values of the coefficients of the series are obtained
through an optimization approach. The usefulness of the proposed
method is verified using a comprehensive example.

2. ANALYSIS

In this section the frequency domain analysis of the structure (Direct
Problem) is reviewed. Fig. 1(a) shows the structure, calling it
Inhomogeneous Dielectric Wall (IDW), which we like to measure its
non-constant permittivity function. The electric permittivity function
is εr(z) and the thickness is d. Also, Fig. 1(b) shows a special case of
IDWs, multi-layer dielectric walls, which has more applications than
the general cases. The differential equations describing IDWs have non-
constant coefficients and so except for a few special cases no closed
form analytic solution exists for them. There are some methods to
analyze IDWs such as finite difference [11], Taylor’s series expansion
[12], Fourier series expansion [13], the method of Moments [14] and the
equivalent sources method [15]. Of course, the most straightforward
method is subdividing IDWs into K homogeneous electrically thin
layers with thickness
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Figure 1. (a) A typical Inhomogeneous Dielectric Wall (IDW) (b) A
typical multilayer dielectric wall (a special case of IDWs).
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in which c is the velocity of the light and fmax is the maximum
frequency of the analysis. The ABCD parameters of the IDW is



Progress In Electromagnetics Research, PIER 78, 2008 41

obtained from those of its thin layers as follows[
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where the ABCD parameters of the k-th thin layer are as follows

Ak = Dk = cos(∆θk) (3)
Bk = Z2

c ((k − 0.5)∆z)Ck = jZc((k − 0.5)∆z) sin(∆θk) (4)

In (3) and (4),

∆θk =
2πf

c

√
εr((k − 0.5)∆z) (5)

is the electrical thickness of the k-th thin layer. Also, Zc(z) is the
characteristic impedance of the IDW, defined as the ratio of the
transverse electric field to the transverse magnetic field, given by

Zc(z) =
√

µ0

ε0

1√
εr(z)

(6)

Finally, the reflection and transmission coefficients of the structure can
be determined from its ABCD parameters as follows

Γ(f) =
(A − Cη0)ZL + (B − Dη0)
(A + Cη0)ZL + (B + Dη0)

(7)

T (f) =
2ZL

(A + Cη0)ZL + (B + Dη0)
(8)

where η0 =
√

µ0/ε0 is the equivalent source impedance of the left side
and also ZL defined as the following is the equivalent source impedance
of the right side.

ZL =

{
η0 right side is matched
0 right side is short circuited

(9)

3. IDENTIFICATION

In this section a general method is proposed to identify the electric
permittivity function of the IDWs (Inverse Problem). First, we
consider the following truncated Fourier series expansion for the
electric permittivity function.

ln(εr(z) − 1) =
N∑

n=0

Cn cos(nπz/d) (10)
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Using the expansion (10) we need to determine only N + 1 coefficients
instead of many, K, parameters used in the direct problem. The values
of the unknown coefficients Cn can be obtained through minimizing
one of the following error functions corresponding to M measuring
frequencies f1 < f2 < . . . < fM .

E1 =

√√√√ 1
M

M∑
m=1

|ΓSC,sim(fm) − ΓSC,meas(fm)|2 (11)

E2 =

√√√√ 1
M

M∑
m=1

|Γm,sim(fm) − Γm,meas(fm)|2 (12)

E3 =

√√√√ 1
M

M∑
m=1

|Tsim(fm) − Tmeas(fm)|2 (13)

E4 =

√√√√ 1
2M

M∑
m=1

(
|Γm,sim(fm)−Γm,meas(fm)|2+|Tsim(fm)−Tmeas(fm)|2

)

(14)

The parameters ΓSC and Γm in (11)–(14) are the input reflection
coefficient when the right side is short-circuited or matched,
respectively. Also, the indices “sim” and “meas” in (11)–(14)
represent the simulation (analysis) and measuring ways, respectively,
to determine the scattering parameters. In fact, the measuring data in
the error functions E1, E2, E3 and E4 are the short-circuited reflection,
the matched-end reflection, the transmission and the combination of
the matched-end reflection and the transmission, respectively. It is
noticeable that if the simulation methods use some approximations or
the measuring data are not fully accurate, the inverse problems may
be diverged because they are ill-posed. So, to stabilize the inverse
problems various kinds of regularizations are usually used [10]. To
utilize the regularization methods for our problem, a suitable fraction
of the energy of the permittivity function or its derivatives should be
added to the defined error functions E1, E2, E3 and E4.

Finally, to investigate the similarity of the identified permittivity
function to the exact one, one may define the following identification
error function.

Eε =

√√√√ 1
K + 1

K∑
k=0

(
εr,iden(kd/K) − εr,exact(kd/K)

εr,exact(kd/K)

)2

(15)

where the index “iden” is the abbreviation of the identification.
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Figure 2. The error functions E1, E2, E3 and E4 with respect to
the number of expansion terms N considering M = 5 measuring
frequencies.

4. EXAMPLE AND RESULTS

We would like to identify a permittivity function with exponential
variation, exp(z/d), using M frequencies with equal distance in the
range of 8.0 to 12.0 GHz (X-Band) assuming d = 2.0 cm. Using
the proposed identification method, considering M = 5 measuring
frequencies, the five defined error functions were obtained versus the
number of expansion terms N . Figure 2 shows E1, E2, E3 and E4

and Figure 3 compares Eε obtained from E1, E2, E3 and E4. It is
observed from these two figures that as N increases each error function
tends to a specified value. Meanwhile, choosing N between 3 and
7 is more suitable than the larger values. Also, it is seen that the
identification error Eε may be sorted from high to low in the cases
of using error functions E3, E1, E2 and E4. So, the worst and the
best identifications are achieved for the cases of using E3 and E4,
respectively. Figures 4–7 illustrate the identified permittivity function
εr(z) for some M assuming N = 5 using the error functions E1, E2, E3

and E4, respectively. One sees from these figures that for a fixed N ,
as the number of measuring frequencies M is increased the identified
permittivity function tends to the exact one. It is seen from Figs. 3
and 6 that for some combination of M and N (such as M = 5 and
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Figure 3. The identified error function Eε with respect to the number
of expansion terms N considering M = 5 measuring frequencies.

Figure 4. The identified permittivity function εr(z) for some M
assuming N = 5 using the error function E1.
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Figure 5. The identified permittivity function εr(z) for some M
assuming N = 5 using the error function E2.

Figure 6. The identified permittivity function εr(z) for some M
assuming N = 5 using the error function E3.
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Figure 7. The identified permittivity function εr(z) for some M
assuming N = 5 using the error function E4.

N = 6) the reverse of the permittivity function may be identified if we
use the error function E3. This is due to the reciprocity principle
i.e. S12 = S21. So, the case of using only transmission data T
has an intrinsic reversing ambiguity. The unknown coefficients of
the truncated Fourier series of the identified permittivity function
considering M = 5 measuring frequencies and N = 5 expansion terms
have been written in Table 1.

Table 1. The unknown coefficients of the truncated Fourier series of
the identified permittivity function considering M = 5 and N = 5.

 C0 C1 C2 C3 C4 C5 

E1 -0.6941 -1.1051 -0.4185 -0.1502 -0.1752 0.0637 

E2 -0.7052 -1.3121 -0.3544 -0.2968 -0.1389 -0.1108 

E3 -0.5674 -0.2357 -0.7045 0.4731 -0.3595 0.3958 

E4 -0.6872 -1.2949 -0.3460 -0.2789 -0.1281 -0.0895 
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5. CONCLUSION

The transmission line technique, as a microwave technique, is
generalized to measure the permittivity function of inhomogeneous
dielectric walls. The measured reflection or transmission coefficients
are used to extract the permittivity function of the dielectric walls.
To solve the problem, the electric permittivity function is expanded
in a truncated Fourier series, first. Then, the optimum values of
the coefficients of the series are obtained through an optimization
approach. The usefulness of the proposed method was verified using
a comprehensive example. It is observed that as the expansion terms
increases each error function tends to a low specified value. The worst
and the best identifications are achieved for the cases of using only
transmission and combination of reflection and transmission measuring
data, respectively. Also, the case of using only transmission data has
an intrinsic reversing ambiguity.
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