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Abstract—A simplified method to obtain the complete set of the
dyadic Green’s functions (DGFs) for general anisotropic media is
presented. The method is based on the k-domain representation
of the fields in terms of wave matrices. The Fourier transformed
Green’s functions are calculated through the inverses of wave matrices.
The inverses of the wave matrices, which lead to the final form
of DGF, are obtained using dyadic decomposition technique. This
facilitates the inverse operation significantly and gives DGFs clear
vector representation, which helps their physical interpretation. The
dyadic decomposition of the wave matrices has been presented for
uniaxially anisotropic, biaxially anisotropic and gyrotropic media. The
method of deriving DGF using the technique given in this paper
is applied on a uniaxially anisotropic medium and verified with the
existing results. It is shown that the knowledge of the inverse of one
type of wave matrix is adequate to find the complete set of the dyadic
Green’s functions for a general anisotropic medium using the method
presented. The duality relations of dyadic Green’s functions are also
developed. It is shown that once the dyadic Green’s functions for one of
the dual media are obtained, the DGFs for the other dual medium can
be found by application of the duality relations shown in this paper.

1. INTRODUCTION

In a variety of applications, such as geophysical prospecting, remote
sensing, wave propagation, microstrip circuits and antennas, it is
necessary to compute the electromagnetic fields in a medium under
consideration. For a given set of sources, the fields may easily be
found if the Green’s function of the medium is available. There have
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been numerous publications on the Green’s functions because of their
widespread use in electromagnetic problems [1–9].

Various methods have been developed to obtain dyadic Green’s
functions (DGFs) for anisotropic media. The most commonly used
methods employed to find DGFs are the Fourier transform method with
differential formulation [10], the method of eigenfunction expansion
[11], and the matrix formulation [12]. In [10], DGFs are obtained
for uniaxial and biaxial layered, planar structures excited by a surface
electric current density when the medium has diagonalized permittivity
tensor. In [11], DGFs for the multilayered anisotropic media are
found using eigenfunction expansion formulation. The formulations
are constructed based on the principle of scattering superposition. In
[12], the DGFs for the anisotropic medium are derived with matrix
exponential function approach based on Cayley-Hamilton theorem.
This approach resembles the method similar to local transition matrix
formulation, which was employed by Morgan et al. [13].

In this paper, the derivation of the complete set of the dyadic
Greens function using a simplified method for a general unbounded
homogeneous anisotropic medium is given. The analysis is carried out
in the k-domain using wave matrix approach. In this domain, the
set of equations, which relates the DGFs to the inverses of the wave
matrices, are obtained with their solutions using dyadic decomposition
technique. This approach simplifies the derivation of the DGF to
the problem of finding the inverse of a wave matrix. The dyadic
decomposition of the wave matrices has been presented for three
different anisotropic media. The method given here is applied on
a uniaxially anisotropic medium. The results are verified with the
existing results. The method introduced here shows a simple and
practical way of finding the complete set of DGFs for anisotropic
media with the knowledge of the inverse of one type of wave matrix.
Furthermore, the duality relations of DGFs are derived and used to
obtain the DGFs of the dual media. The DGF formulation given in
this paper is especially useful for radiation and scattering problems in
the presence of an anisotropic medium of any type.

2. FORMULATION AND SOLUTIONS

Maxwell’s equations for a general anisotropic medium with relative
permittivity and permeability tensors, ε and µ, in the presence of
impressed magnetic current density M and the electric current density
J can be written as

∇× E = iωµ0µ ·H −M (1)
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∇×H = −iωε0ε · E + J (2)

The linearity of Maxwell’s equations implies linear dependence of E
and H on the excitations J and M . Then E and H can be represented
as

E(r) =
∫

V ′
Gee(r, r′) · J(r′)d3r′ +

∫
V ′
Gem(r, r′) ·M(r′)d3r′ (3)

H(r) =
∫

V ′
Gme(r, r′) · J(r′)d3r′ +

∫
V ′
Gmm(r, r′) ·M(r′)d3r′ (4)

or in matrix form[
E(r)
H(r)

]
=

∫
V ′

[
Gee(r, r′) Gem(r, r′)

Gme(r, r′) Gmm(r, r′)

]
·
[
J(r′)
M(r′)

]
d3r′ (5)

The dyadic Green’s functions Gee(r, r′), Gmm(r, r′) are called electric
type and magnetic type and Gme(r, r′), Gem(r, r′) are called magnetic-
electric type and electric-magnetic type DGFs. Equation (5) can be
simplified as [

E(r)
H(r)

]
=

∫
V ′
G(r, r′) ·

[
J(r′)
M(r′)

]
d3r′ (6)

where

G(r, r′) =

[
Gee(r, r′) Gem(r, r′)

Gme(r, r′) Gmm(r, r′)

]
(7)

In (6), the integral is taken over all space, i.e.,∫
d3r′ =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
dx′dy′dz′ (8)

The Fourier transform pair of the field vectors can be expressed as

F (r) =
1

(2π)3

∫
F (k)eik·rd3k (9a)

F (k) =
∫
F (r)e−ik·rd3r (9b)

where F = E for an electric field vector and F = H for a magnetic
field vector. Here the integration over k is three dimensional as the
integration over r, i.e., d3k = dkxdkydkz.
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Similarly, the Fourier transform pairs for DGF G(r, r′) can be
written as

G(r, r′) =
1

(2π)3

∫
G(k)eik·(r−r′)d3k (10)

G(k) =
∫
G(r, r′)e−ik·(r−r′)d3(r − r′) (11)

Translational invariance assumed in the use of (r− r′) comes from the
unbounded nature of the problem. Substitution of (9a), (10) into (6)
gives

1
(2π)3

∫ [
E(k)
H(k)

]
eik·rd3k =

∫ [
1

(2π)3

∫
G(k)eik·(r−r′)d3k

][
J(r′)
M(r′)

]
d3r′

(12)
where G(k) is given by

G(k) =

[
Gee(k) Gem(k)

Gme(k) Gmm(k)

]
(13)

When we change the order of integration in (12), we obtain

∫ [
E(k)
H(k)

]
eik·rd3k =

∫
G(k)eik·r

∫ [
J(r′)
M(r′)

]
e−ik·r′d3r′d3k

=
∫
G(k)

[
J(k)
M(k)

]
eik·rd3k (14)

Using (14), we can relate the field vectors to dyadic Green’s functions
in the k-domain as[

E(k)
H(k)

]
=

[
Gee(k) Gem(k)

Gme(k) Gmm(k)

] [
J(k)
M(k)

]
(15)

Now, assuming the solutions for the fields in the form of eik·r and using

k × E = k E (16)

where

k =


 0 −kz ky

kz 0 −kx

−ky kx 0


 (17)
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Maxwell’s equations given by (1) and (2) can be transformed into the
k-domain and we can derive the matrix equations for E(k) and H(k)
as [

kε
−1
k + k2

0µ
]
·H(k) = −ikε−1

J(k) − iωε0M(k) (18)[
kµ

−1
k + k2

0ε
]
· E(k) = −iωµ0J(k) + ikµ

−1
M(k) (19)

where k2
0 = ω2µ0ε0. The derivation of equations (18) and (19) is given

in Appendix A. We define

WH =
[
kε

−1
k + k2

0µ
]

(20)

as a magnetic wave matrix and

WE =
[
kµ

−1
k + k2

0ε
]

(21)

as an electric wave matrix. Note that the wave matrices are “dual”
of each other in the sense that one can be obtained from the other by
replacing ε↔ µ.

Equations (18) and (19) can be expressed using wave matrices as

WH ·H(k) = −ikε−1
J(k) − iωε0M(k) (22)

WE · E(k) = ikµ
−1
M(k) − iωµ0J(k) (23)

We can represent (22) and (23) in matrix form as
[
WE(k) 0

0 WH(k)

] [
E(k)
H(k)

]
=

[
−iωµ0I ik µ

−1

−ik ε−1 −iωε0I

] [
J(k)
M(k)

]
(24)

Equation (24) can be modified as

[
E(k)
H(k)

]
=


 −iωµ0W

−1

E iW
−1

E k µ
−1

−iW
−1

H k ε
−1 −iωε0W

−1

H




[
J(k)
M(k)

]
(25)

Equation (25) relates the field vectors to the inverses of the wave
matrices in the k-domain. When (15) and (25) are compared, we obtain
the following relation

[
Gee(k) Gem(k)

Gme(k) Gmm(k)

]
=


 −iωµ0W

−1

E iW
−1

E k µ
−1

−iW
−1

H k ε
−1 −iωε0W

−1

H


 (26)
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Equation (26) is the representation of DGFs in terms of the inverses of
the wave matrices in the k-domain for a general anisotropic medium.
More explicitly,

Gee(k) = −iωµ0W
−1

E (27a)

Gem(k) = iWEkµ
−1 (27b)

Gme(k) = −iWHkε
−1 (27c)

Gmm(k) = −iωε0W
−1

H (27d)

The relation between the inverses of the wave matrices is derived as
[14]

W
−1

H =
1
k2

0

[
µ
−1 − µ−1

kW
−1

E kµ
−1

]
(28)

Equations (27)–(28) clearly show that the knowledge of the inverse
of one type of wave matrix is sufficient to obtain the complete set of
dyadic Green’s functions in the k-domain. The final form of the dyadic
Green’s functions, which is valid everywhere but the source point, is
obtained by substituting (27) into (10) as follows.

G(r, r′) =
1

(2π)3

∫ 
 −iωµ0W

−1

E iW
−1

E k µ
−1

−iW
−1

H k ε
−1 −iωε0W

−1

H


 eik·(r−r′)d3k (29)

In the following section, the method to obtain the inverse of the wave
matrices using dyadic decomposition technique is discussed.

3. DYADIC REPRESENTATION

The problem of finding the complete set of DGFs for any type of
anisotropic medium is simplified by equations (27)–(29) to finding the
inverse of an electric wave matrix WE which is equal to

W
−1

E =
adj

(
WE

)
∣∣∣WE

∣∣∣ (30)

adj
(
WE

)
is known as the adjoint and

∣∣∣WE

∣∣∣ is known as the
determinant of the electric wave matrix. The dispersion relation for
anisotropic medium is found by using (19) in the source free region,
i.e., J = 0 and M = 0, as

WE · E = 0 (31)
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For the homogenous equation (31) to have a non-zero vector solution E,
the determinant of the electric wave matrix must vanish, i.e.,

∣∣∣WE

∣∣∣ = 0,
or ∣∣∣WE

∣∣∣ =
∣∣∣kµ−1

k + k2
0ε

∣∣∣ = 0 (32)

As a result, once the Green’s function in integral form given by
equation (29) is obtained, the problem is reduced to finding the
adjoint matrix adj

(
WE

)
and the determinant

∣∣∣WE

∣∣∣ of the electric

wave matrix. In the following sections, adj
(
WE

)
and

∣∣∣WE

∣∣∣ for
three different types of anisotropic media are derived and represented
in dyadic forms. The dyadic representation of Green’s functions is
obtained by direct substitution of the results into (29).

3.1. Uniaxially Anisotropic Medium

A uniaxially anisotropic medium is defined by the following relative
permittivity and permeability tensors

ε = ε11I + (ε33 − ε11)p̂p̂ (33a)

µ = I (33b)

p̂ shows the direction of the optic axis exists in the uniaxially
anisotropic medium and equals p̂ = ẑ. When (33) is substituted into
(21), the electric wave matrix in dyadic forms is found as

WE =
(
k2

0ε11 − k2
)
I + k k + k2

0(ε33 − ε11)p̂p̂ (34)

The dispersion relation for a uniaxially anisotropic medium is derived
by substituting (33) into (32) as follows.∣∣∣WE

∣∣∣ = k2
0

(
k2 − k2

0ε11
) [
k2

ρε11 + k2
zε33 − k2

0ε11ε33
]

= 0 (35)

The adjoint matrix, adj
(
WE

)
is obtained in dyadic form using (34)

as

adj
(
WE

)
=

(
k2

0ε11 − k2
) [
k2

0ε11I − k k − k2
0(ε33 − ε11)p̂p̂

]
+k2

0(ε33 − ε11)
(
k × p̂

) (
k × p̂

)
(36)
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3.2. Biaxially Anisotropic Medium

The relative permittivity and permeability tensors of a biaxially
anisotropic medium can be expressed as

ε = ε22I

(
ε33 − ε11

2

)
(p̂1p̂2 + p̂2p̂1) (37a)

µ = I (37b)

p̂1 and p̂2 show the direction of two optic axes that exist in a biaxially
anisotropic medium. They are given by equation (38) below.

p̂1 =

√
ε33 − ε22
ε33 − ε11

ẑ +

√
ε22 − ε11
ε33 − ε11

x̂ (38a)

p̂2 =

√
ε33 − ε22
ε33 − ε11

ẑ −
√
ε22 − ε11
ε33 − ε11

x̂ (38b)

We obtain the electric wave matrix in dyadic form by substituting (37)
into (21) as

WE = k k +
[(
ε22k

2
0 − k2

)
I + k2

0

(
ε33 − ε11

2

)
(p̂1p̂2 + p̂2p̂1)

]
(39)

The dispersion relation for a biaxially anisotropic medium is derived
by inserting (37) into (32) and given by∣∣∣WE

∣∣∣ = α
[
(α+ βp̂1 · p̂2)

2 − β2
]

+k ·
[
α

[
(α+ 2βp̂1 · p̂2) I − β(p̂1p̂2 + p̂2p̂1)

]
− β2 (p̂1 × p̂2) (p̂2 × p̂1)

]
· k = 0 (40)

where

α = ε22k
2
0 − k2 (41)

β = k2
0

(
ε33 − ε11

2

)
(42)

adj
(
WE

)
for a biaxially anisotropic medium is obtained using (39)

and expressed in dyadic form as

adj
(
WE

)
=α

[
(α+ 2βp̂1 · p̂2)I − β(p̂1 · p̂2 + p̂2 · p̂1)

]
−β2(p̂1 × p̂2)(p̂1 × p̂2)

+
[
(α−(3α+ 2β(p̂1 · p̂2)))I+β(p̂1 · p̂2+p̂2 · p̂1)

]
·
(
k × I

)
+

[(
k ·

[
αI + β(p̂1 · p̂2 + p̂2 · p̂1)

])
× I

]
·
(
k × I

)
(43)
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3.3. Electrically Gyrotropic Medium

An electrically gyrotropic or a gyroelectric medium is a medium whose
relative permittivity and permeability tensors are in the following
dyadic forms

ε = ε1
(
I − b̂0b̂0

)
+ iε2

(
b̂0 × I

)
+ ε3b̂0b̂0 (44a)

µ = µI (44b)

where b̂0 shows the direction of the applied dc magnetic field. When
B0 ≡ b̂0B0 = ẑB0, i.e., b̂0 = ẑ = (0, 0, 1), µ = 1 i.e., cold plasma, and
(44) is substituted into (21), the electric wave matrix in dyadic form
can be obtained as

WE =
(
k2

0ε1 − k2
)
I + b̂0b̂0

(
k2

0ε3 − k2
0ε1

)
+ ik2

0ε2
(
b̂0 × I

)
+ k k (45)

Following the same steps outlined in the preceding sections, the
dispersion relation for a gyroelectric medium is given by equation (46).∣∣∣WE

∣∣∣ = k2
0ε3

(
k2

z − k2
zI

) (
k2

z − k2
zII

)
= 0 (46)

adj
(
WE

)
can be derived using (45) and expressed in dyadic form as

adjWE =
(
k4

0adjε− k2k2
0ε3I

)
+ k̂k̂

[
k2

(
k2 − k2

0ε1
)]

+b̂0b̂0
[
k2k2

0(ε3 − ε1)
]
+ (k̂ × b̂0)(k̂ × b̂0)

[
k2k2

0(ε3 − ε1)
]

+iε2k2k2
0

[
k̂(k̂ × b̂0) − (k̂ × b̂0)k̂

]
(47)

where

k2 = k2
ρ + k2

z = k2
x + k2

y + k2
z (48)

adjε = ε1ε3I − iε2ε3
(
b̂0 × I

)
+ (ε1 − ε3)b̂0b̂0 (49)

The results obtained in (45) and (47) check with the results given in
[15]. It is to be noted that magnetically gyrotropic medium is dual
of electrically gyrotropic medium with application of the following
transformations

ε→ µ, µ→ ε, µ0 → ε0 (50)

As a result, adj
(
WE

)
and

∣∣∣WE

∣∣∣ for a magnetically gyrotropic medium
can be obtained easily using the results for an electrically gyrotropic
medium with the application of the duality relations given by (50).
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4. VERIFICATION OF THE PROCEDURE

In this section, the method outlined in Section 2, using the results
given in Section 3, is applied to obtain DGF for a uniaxially anisotropic
medium. The final form of the DGF is compared with the results given
in [16].

The integral form of the electric type DGF for a uniaxially
anisotropic medium is given by (29) and equal to

G
e

ee(r, r
′) =

−iωµ0

(2π)3

∫
W

−1

E eik·(r−r′)d3k (51)

When (30) is substituted into (51), we obtain

G
e

ee(r, r
′) =

−iωµ0

(2π)3

∫ adj
(
WE

)
∣∣∣WE

∣∣∣ eik·(r−r′)d3k (52)

Using the results given for a uniaxially anisotropic medium in Section
3.1, the dispersion relation for a uniaxially anisotropic medium can be
found as∣∣∣WE

∣∣∣ = k2
0

(
k2 − k2

0ε11
) [
k2

ρε11 + k2
zε33 − k2

0ε11ε33
]

= 0 (53a)

or ∣∣∣WE

∣∣∣ = k2
0ε33

(
k2

z −
(
k2

0ε11 − k2
ρ

)) [
k2

z −
(
k2

0ε11 − k2
ρ

ε11
ε33

)]
= 0

(53b)
The wave numbers for a uniaxially anisotropic medium can be obtained
using (53) as follows.

k2
zI = k2

0ε11 − k2
ρ (54a)

k2
zII = k2

0ε11 − k2
ρ

ε11
ε33

(54b)

where
k2 = k2

ρ + k2
z = k2

x + k2
y + k2

z (55)

Equations (54) represent the two types of waves — type I wave or an
ordinary wave, which is represented by kzI , and type II wave or an
extraordinary wave which is represented by kzII exist in the uniaxially
anisotropic medium. The wave numbers given by equation (54) check
with the results given in [16] when optic axis is taken in the z-direction
by setting tilt angle equal to zero, ψ = 0.
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Equation (53b) can be put in the following form using (54)–(55)∣∣∣WE

∣∣∣ = k2
0ε33

(
k2

z − k2
zI

) (
k2

z − k2
zII

)
(56)

adj
(
WE

)
for a uniaxially anisotropic medium is obtained in

Section 3.1 and equal to

adj
(
WE

)
=

(
k2

0ε11 − k2
) [
k2

0ε11I − k k − k2
0(ε33 − ε11)p̂p̂

]
+k2

0(ε33 − ε11)(k × p̂)(k × p̂) (57)

adj
(
WE

)
can be put in the following matrix form

adj
(
WE

)
=


 A11 A12 A13

A21 A22 A23

A31 A32 A33


 (58)

The matrix elements of adj
(
WE

)
are derived as

A11 = k2k2
x − k2

0

(
k2

x + k2
z

)
ε33 − k2

ρk
2
0ε11 + k4

0ε11ε33 (59a)

A12 = A21 = k2kxky − k2
0kxkyε33 (59b)

A13 = A31 = k2kxkz − k2
0kxkzε11 (59c)

A22 = k2
(
k2

y − k2
0ε33

)
+ k2

0

(
k2

x[ε33 − ε11] − k2
yε11

)
+ k4

0ε11ε33 (59d)

A23 = A32 = k2kykz − k2
0kykzε11 (59e)

A33 = k2
(
k2

z − k2
0ε11

)
− k2

0k
2
zε11 + k4

0ε
2
11 (59f)

When (56)–(58) are substituted into (52), we obtain electric type DGF
as

Gee(r, r′) =
−iωµ0

(2π)3

∫ 1
k2

0ε33
(
k2

z − k2
zI

) (
k2

z − k2
zII

)
×


 A11 A12 A13

A21 A22 A23

A31 A32 A33


 eik·(r−r′)dkxdkydkz (60)

We perform the integration over kz to obtain the two dimensional form
of the DGF that is widely used in radiation and scattering problems.
This form of the DGF is useful especially for the layered structures
when the stratification of the layers is in the z-direction. The poles
of the integrand occur at the zeros of

∣∣∣WE

∣∣∣ denoted by kz = ±kzI
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and kz = ±kzII . We assume the medium to be slightly lossy, i.e.,
Imkz 	 Rekz, Imkz > 0. This guarantees that the radiation condition
is satisfied at z = ±∞. When we perform the contour integration over
kz, we obtain the following result for z > z′

Gee(r, r′) =
ωµ0

4πk2
0

∞∫
−∞

∞∫
−∞

dkxdky

{
adkWEI

2kzI

(
k2

zI − k2
zII

)
ε33
eikI ·(r−r′)

+
adjWEII

2kzII

(
k2

zII − k2
zI

)
ε33
eikII ·(r−r′)

]
, z > z′ (61)

In (61), adjWEI in matrix form can be obtained using (58)–(59) as

adjWEI = adjWE

∣∣∣
kz=kzI

(62)

So,

adjWEI =


 B11 B12 B13

B21 B22 B23

B31 B32 B33


 (63)

The matrix elements are

B11 = k2
0k

2
y(ε33 − ε11) (64a)

B12 = B21 = k2
0k

2
xk

2
y(ε11 − ε33) (64b)

B13 = B31 = 0 (64c)
B22 = k2

0k
2
x(ε33 − ε11) (64d)

B23 = B32 = 0 (64e)
B33 = 0 (64f)

Following the same procedure, adjWEII in matrix form can be
obtained as

adjWEII = adjWE

∣∣∣
kz=kzII

(65)

So,

adjWEII =


 C11 C12 C13

C21 C22 C23

C31 C32 C33


 (66)

The matrix elements for adjWEII are

C11 = k2
xk

2
zII

(
ε11 − ε33
ε11

)
(67a)
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C12 = C21 = kxkyk
2
zII

(
ε11 − ε33
ε11

)
(67b)

C13 = C31 = kxkzII

(
ε11 − ε33
ε11

) (
−k2

ρ

ε11
ε33

)
(67c)

C22 = k2
yk

2
zII

(
ε11 − ε33
ε11

)
(67d)

C23 = C32 = kykzII

(
ε11 − ε33
ε11

) (
−k2

ρ

ε11
ε33

)
(67e)

C33 =
(
ε11 − ε33
ε11

) (
k2

ρ

ε11
ε33

)2

(67f)

The final form of the DGF given in (61) and the coefficients given in
(64) and (67) check with the results given in [16] when the optic axis
is in the z-direction, i.e., tilt angle is zero ψ = 0◦.

5. DUALITY OF DYADIC GREEN’S FUNCTIONS

The duality of dyadic Green’s functions is best explained on gyrotropic
medium. Gyrotropic medium becomes electrically gyrotropic if it is
defined by the following relative permittivity and permeability tensors

ε = ε1
(
I − b̂0b̂0

)
+ iε2

(
b̂0 × I

)
+ ε3b̂0b̂0 (68a)

µ = µI (68b)

whereas gyrotropic medium becomes magnetically gyrotropic if it is
defined by

µ = µ1

(
I − b̂0b̂0

)
+ iµ2

(
b̂0 × I

)
+ µ3b̂0b̂0 (69a)

ε = εI (69b)

We rewrite Eqs. (3) and (4) as

E(r) =
∫

V ′
G

e,m

ee (r, r′) · J(r′)d3r′ +
∫

V ′
G

e,m

em (r, r′) ·M(r′)d3r′ (70)

H(r) =
∫

V ′
G

e,m

me (r, r′) · J(r′)d3r′ +
∫

V ′
G

e,m

mm(r, r′) ·M(r′)d3r′ (71)

The dyadic Green’s functions G
e,m

ee (r, r′), G
e,m

mm(r, r′) are called electric
type and magnetic type, respectively and G

e,m

me (r, r′), G
e,m

em (r, r′)
are called magnetic-electric type and electric-magnetic type DGFs,
respectively. The superscript of the DGF refers to the type of the
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gyrotropic medium and the first and the second subscripts show the
type of the dyadic Green’s function. The subscript ‘e’ refers to an
electric type and ‘m’ refers to a magnetic type DGF. The superscript
‘e’ stands for an electrically gyrotropic medium. The superscript ‘m’
stands for a magnetically gyrotropic medium.

To derive the first order dyadic differential equations for an
electrically gyrotropic medium, we substitute (70), (71), and (68) into
(1) and (2) and use

J(r) =
∫

V ′
δ(r − r′)I · J(r′)d3r′ (72)

M(r) =
∫

V ′
δ(r − r′)I ·M(r′)d3r′ (73)

Note that in this case, the superscript of the DGF is “e” representing
an electrically gyrotropic medium. We obtain

∇×G
e

ee(r, r
′) = iωµ0µG

e

me(r, r
′) (74)

∇×G
e

me(r, r
′) = −iωε0ε ·G

e

ee(r, r
′) + δ(r − r′)I (75)

∇×G
e

em(r, r′) = iωµ0µG
e

mm(r, r′) − δ(r − r′)I (76)

∇×G
e

mm(r, r′) = −iωε0ε ·G
e

em(r, r′) (77)

When equations (74)–(77) are decoupled they lead to the second order
dyadic differential equations as follows.[

∇×∇× I − k2
0µε

]
·G

e

ee(r, r
′) = iωµ0µIδ(r − r′) (78)[

∇× ε−1 · ∇ × I − k2
0µI

]
·G

e

mm(r, r′) = iωε0Iδ(r − r′) (79)[
∇×∇× I − k2

0µε
]
·G

e

em(r, r′) = −∇× Iδ(r − r′) (80)[
∇× ε−1 · ∇ × I − k2

0µI
]
·G

e

me(r, r
′) = ∇× ε−1

δ(r − r′) (81)

where
k2

0 = ω2µ0ε0

We repeat the same procedure to find the first order dyadic differential
equations for a magnetically gyrotropic medium by substituting (70),
(71) and (69) into (1) and (2). Note that in this case, the superscript
of the DGF is “m” representing a magnetically gyrotropic medium.
We obtain

∇×G
m

ee(r, r
′) = iωµ0µ ·G

m

me(r, r
′) (82)
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∇×G
m

me(r, r
′) = −iωε0εG

m

ee(r, r
′) + δ(r − r′)I (83)

∇×G
m

em(r, r′) = iωµ0µ ·G
m

mm(r, r′) − δ(r − r′)I (84)

∇×G
m

mm(r, r′) = −iωε0εG
m

em(r, r′) (85)

When equations (82)–(85) are decoupled they lead to the second order
dyadic differential equations as follows.[

∇× µ−1 · ∇ × I − k2
0εI

]
·G

m

ee(r, r
′) = iωµ0Iδ(r − r′) (86)[

∇×∇× I − k2
0εµ

]
·G

m

mm(r, r′) = iωε0εδ(r − r′) (87)[
∇× µ−1 · ∇ × I − k2

0εI
]
·G

m

em(r, r′) = −∇× µ−1
δ(r − r′) (88)[

∇×∇× I − k2
0εµ

]
·G

m

me(r, r
′) = ∇× Iδ(r − r′) (89)

When both sets of (78)–(81) and (86)–(89) are compared, it is seen
that application of the duality transformation

ε→ µ, µ→ ε, µ0 → ε0 (90)

on the problem of electrically gyrotropic medium transforms dyadic
Green’s functions into their dual ones for a magnetically gyrotropic
medium as follows.

G
e

ee(r, r
′) → G

m

mm(r, r′) (91)

G
e

me(r, r
′) → −G

m

em(r, r′) (92)

G
e

mm(r, r′) → G
m

ee(r, r
′) (93)

G
e

em(r, r′) → −G
m

me(r, r
′) (94)

Thus, if the dyadic Green’s functions are obtained for the given type of
gyrotropic medium, the dyadic Green’s functions for the dual medium
can be obtained by applying the duality transformation introduced by
(90) and (91)–(94).

6. CONCLUSION

In this paper, the complete set of the dyadic Green’s functions
for a general anisotropic medium is obtained by using a simplified
method. The inverse operation, which is crucial in DGF formulation,
is accomplished using the dyadic decomposition technique. The
dyadic decomposition for wave matrices has been presented for several
anisotropic media. The method is applied on a uniaxially anisotropic
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medium and verified with the existing results. It is shown that the
knowledge of the inverse of one type of wave matrix is adequate
to obtain the complete set of the DGFs for a general anisotropic
medium. The duality relations of DGFs have also been developed
and we have shown that once the DGFs for one of the dual media are
obtained, DGFs for the other dual medium can be obtained by a simple
application of the duality relations shown in this paper. The results
presented here are generic and can be used in antenna and scattering
problems in the presence of any type of anisotropic medium.

APPENDIX A.

Maxwell equations for a general anisotropic medium in the presence
of an impressed magnetic current density M and an electric current
density J can be written as

∇× E = iωµ0 µ ·H −M (A1)
∇×H = −iωε0 ε · E + J (A2)

First, we transform Maxwells equations into those in the k-domain and
express them as

ik × E = iωµ0 µ ·H −M (A3)
ik ×H = −iωε0 ε · E + J (A4)

Equations (A3) and (A4) can be written as

E(k) = − 1
iωε0

ε
−1

[
ik ×H(k) − J(k)

]
(A5)

H(k) =
1

iωµ0
µ
−1

[
ik × E(k) +M(k)

]
(A6)

Substitution of (A5) into (A3) gives

k ε
−1
kH(k) + ik ε

−1
J(k) = −k2

0 µH (k) − iωε0M(k)

or [
k ε

−1
k + k2

0 µ
]
·H(k) = −ik ε−1

J(k) − iωε0M(k) (A7)

where k is defined as

k =


 0 −kz ky

kz 0 −kx

−ky kx 0


 (A8)
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and we have made the use of equation (16).
If we follow the same procedure by substituting (A6) into (A4),

we get

−k µ−1
kE(k) + ik µ

−1
M(k) = k2

0 εE(k) + iωµ0 J(k)

or
[
k µ

−1
k + k2

0 ε
]
· E(k) = −iωµ0J(k) + ik µ

−1
M(k) (A9)
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