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Abstract—Backscattering Radar Cross Section (RCS) of electrically
large targets is analyzed using Physical Optics (PO) approximation.
The targets are located in a dielectric half-space, and modeled with
Nonuniform Rational B-spline (NURBS) surfaces. The influence of
the half-space is considered by the “four-path” model approximation.
Results show the validity of the method.

1. INTRODUCTION

The use of Nonuniform Rational B-spline (NURBS) to describe
complex targets for Radar Cross Section (RCS) computation was firstly
introduced by some Spanish researchers [1, 2]. Compared with flat
facets, NURBS surfaces have great advantages [1], so more and more
targets are modeled with NURBS surfaces [3–7]. But, the research on
NURBS model is mostly focused on the targets located in free space.
For some kind of objects, such as warship on sea or tank on ground,
the influence of dielectric half-space to their scattering mechanism can
not be ignored. So, the author analyzed the NURBS model located in
a dielectric half-space.

Although Moment Method (MOM) combined with the half-space
Green’s function has been proposed by many references [8–11], it is not
applicable because of the mass storage memory and low computational
efficiency. The “four-path” model method [12–14] is a simple, effective
and efficient way to approximate the influence of the half space to
the scattering mechanisms. And Physical Optics (PO) [1, 3, 6, 15]
approximation is a high frequency method which is applied to calculate
the RCS of electrically large targets. The method of the “four-path”
model combined with PO [16] has been presented to compute the RCS
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of flat plates in half space and this method can be extended to calculate
the RCS of complex targets which are modeled by a series of flat plates.
In this paper, the author introduced the combined method into the
computation of half space NURBS model. The examples in this paper
show the validity of the method.

2. NURBS TECHNIQUE

NURBS technique [17] allows a complex target to be represented with
a small number of patches, for example, a cylinder or a sphere can be
modeled exactly with a single NURBS surface. Therefore, it will reduce
the computation time needed to analyze a realistic target. NURBS
surfaces are usually transformed into Beizer patches for computation,
because they are more suitable for the numerical treatment, thanks to
the characteristics of the Bernstein polynomial that define the patches.
The transformation of NURBS into Bezier surfaces is performed by
applying the Cox-de-Boor algorithm [17]. The surface point of a Bezier
surface is expressed as:
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Where bij are the control points, wij are the associated weights, m and
n are the surface degrees, and Bn

j (t) are the Bernstein polynomials
which are defined as:
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3. BACKSCATTERING FIELD OF A BEZIER SURFACE
LOCATED IN HALF SPACE

The scattering mechanisms considered in the approximate four-path
model are illustrated in Fig. 1. When the surface of half space is
assumed to lie at the z = 0 plane, given an incident planar wave,
under the “four-path” modal approximation, the backscattered field of
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Figure 1. Scattering mechanisms of the “four-path” model. (a)
Path 1. (b) Path 2. (c) Path 3. (d) Path 4.

an arbitrary conducting body predicted by PO is given by [16]:
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where, r̂r = r̂ − 2ẑ (r̂ · ẑ) is the reflected vector, k is the wave number,
RH and RV are the Fresnel reflection coefficients for horizontal and
vertical polarization respectively, which are given by:
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εr and σ are the permittivity and conductivity of the half space
respectively. The integral terms I(w , v) and I ′(w , v) of (1) are given
by:

I(w̄, v̄) =
∫∫
s

(w̄ · n̂) exp(jkv̄ · r̄)dS (6)

I ′(w̄, v̄) =
∫∫
s′

(w̄ · n̂) exp(jkv̄ · r̄)dS (7)

where s is the illuminated portion of the incident wave, s′ is the
illuminated portion of the reflected wave from the surface of half-space,
r̄ is the location of an arbitrary point on the illuminated portion, n̂ is
the unit normal vector at r̄. The integral that should be computed can
be expressed on the parametric coordinates of the Bezier patch [1], so

I(w̄, v̄) =
∫ 1

0

∫ 1

0
(w̄ · r̄u × r̄v) exp(jkv̄ · r̄)dudv (8)

Integral (8) can be computed with the Stationary Phase Method
(SPM) [1, 18]. The contribution to the integral for the doubly curved
patches is given by three kinds of critical points when the SPM is
applied:

1) Stationary phase points: The contributions to the integral are
proportional to k−1 and are given by:
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where σ = sign (v̄ · r̄uu), and δ = sign
[
(v̄ · r̄uu) (v̄ · r̄vv) − (v̄ · r̄uv)

2
]

2) Boundary critical points: The contributions to the integrals which
are proportional to k−3/2 are:

Ibou = j (−1)α (w̄ · r̄u × r̄v)
kv̄ · r̄α

exp(jkv̄ · r̄)
√

2πj

kv̄ · r̄ββ
(10)

where on the boundaries u = 0 and u = 1, α is u and β is v, and
on the boundaries v = 0 and v = 1, α is v and β is u.
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3) Vertex points: The main contributions to the integrals are
proportional to k−2 and are given by

Iver = − (−1)u+v (w̄ · r̄u × r̄v)
k2 (v̄ · r̄u) (v̄ · r̄v)

exp(jkv̄ · r̄) (11)

For singly curved patches, the above expressions are not valid
because the second derivation of r̄(u, v) is equal to zero for one
parametric coordinate. In this case, the integration along the linear
coordinate can be calculated analytically and the SPM is applied to
evaluate the integral along the other coordinate. For example, if the
surface is linear with the parametric coordinate v, the PO integral can
be written as:

I =
∫ 1

0
Iu (v) dv (12)

where

Iu =
∫ 1

0
(w̄ · r̄u × r̄v) exp(jkv̄ · r̄)du (13)

The contribution to the integral is calculated by two kinds of critical
segments when the SPM is applied:

1) Stationary phase segments:

Ista = (w̄ · r̄u × r̄v) exp(jkv̄ · r̄)
√

2πj

kv̄ · r̄uu
(14)

2) Boundary segments:

Ibou = j (−1)u0 exp(jkv̄ · r̄) w̄ · r̄u × r̄v

k |v̄ · r̄u|
(15)

These expressions are integrated analytically along the coordinate v to
obtain the scattered field.

4. NUMERICAL RESULTS

The frequency of the incident planar wave is 3 GHz, and the relative
permittivity and conductivity of the half space is εr = 76.7 − j12
and σ = 4 mho/m respectively. Numerical results of RCS for different
geometries are presented below.
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Figure 2. Geometry of a spherically curved plate.

4.1. Spherically Curved Plate

An object which is modeled with only one doubly curved Bezier surface
is shown in Fig. 2. The plate extends over a beam of 120◦ for θ angles
and 90◦ for ϕ angles. The radius of the sphere is 1 m, and the distance
between the centre of the sphere and the half space surface is 1 m too.
Fig. 3 show the RCS result at the ϕ = 90◦ cut, as a function of θ
angle for horizontal polarization. The result from Numerical method
is obtained using numerical integration [16].

4.2. Cylindrically Curved Plate

This object is one quarter of a cylinder and is modeled with only one
singly curved Bezier surface. The geometry of the plate is presented in
Fig. 4. The height of the plate is 0.5 m, and the radius of the cylinder
is 0.2 m. The distance between the plate and the half space surface
is 0.5 m. Fig. 5 show the RCS results at ϕ = 90◦ cut for horizontal
polarization. The result from Numerical method is obtained using
numerical integration [16].
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Figure 3. RCS of the spherically curved plate.
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Figure 4. Geometry of a cylindrically curved plate.
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Figure 5. RCS of the cylindrically curved plate.

5. CONCLUSION

A method for the RCS computation of electrically large conducting
bodies modeled with NURBS surfaces in half space is presented using
PO approximation. The results from the method presented in this
paper agree very well with those obtained from the numerical method,
which shows that the presented method is valid.
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