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Abstract—An analytical solution is presented for the electromagnetic
scattering from a perfect electromagnetic conducting circular cylinder,
embedded in the dielectric half-space. The solution utilizes the spectral
(plane wave) representations of the fields and accounts for all the
multiple interactions between the buried circular cylinder and the
dielectric interface separating the two half spaces.

1. INTRODUCTION

Over the past few decades, a significant amount of research effort has
been spent in the study of buried object detection. The results of
such research can be applied to the buried land mines, pipes, and
other buried objects of interest. Various analytical and numerical
contributions are available in this direction. The analysis of a buried
object below flat surface has been done analytically by D’Yakonov [1],
and subsequently has been explained by Howard [2] and Ogunade [3],
where the solution was obtained by the eigenfunction expansion of
the total fields. A number of other analytical studies involving the
scattering from buried objects below a flat interface have also been
done [4–15]. Problem of a buried conducting cylinder of arbitrary
geometry below a flat surface using the method of moments (MoM) is
treated in [16, 17]. Scattering of electromagnetic waves by multiple
cylinders had been extensively studied in published literature [18–
27]. Perfectly conducting, dielectric, impedance and bi-isotropic/chiral
cylinders were considered for the analysis using different methods.
Most commonly used methods are the integral equation formulation,
partial differential equation formulation and hybrid techniques which
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combine the partial differential equation method with a surface integral
equation or with an eigenfunction expansion.

Recently concept of perfect electromagnetic conductor (PEMC)
as generalization of the perfect electric conductor (PEC) and perfect
magnetic conductor (PMC) [28] has been introduced and has attracted
the attention of many researchers [29–39]. It is well known that PEC
boundary may be defined by the conditions

n × E = 0, n.B = 0

While PMC boundary may be defined by the boundary conditions

n × H = 0, n.D = 0

The PEMC boundary conditions are of the more general form

n × (H + ME) = 0, n.(D.MB) = 0

where M denotes the admittance of the PEMC boundary. It is obvious
that PMC corresponds to M = 0, while PEC corresponds to M = ±∞.

The purpose of this work is to derive an analytical solution for a
perfect electromagnetic conducting cylinder (PEMC), buried beneath
a dielectric half space. The solution is obtained by employing the plane
wave representation of the fields and adding the successive reflections
from the interface and the scattered fields from the buried cylinder.
All the multiple interactions are accounted for in this analysis. Details
of the analytical work are presented in the following sections.

2. ANALYTICAL DEVELOPMENT

2.1. Initial Reflected and Transmitted Fields

Consider a perfect electromagnetic conducting (PEMC) circular
cylinder of infinite extent and buried in a dielectric half space geometry
as shown in Figure 1. It is assumed that axis of the cylinder is
coincident with z-axis of the coordinate system. Radius of the cylinder
is a and depth of the cylinder from dielectric interface is d. It is
assumed that both half spaces are lossless, isotropic, homogeneous,
linear and nondispersive. Region above the dielectric interface has been
termed as region 0 and has wavenumber k0 = ω

√
µ0ε0 while region

between the dielectric interface and cylinder is termed as region 1
and has wavenumber k1 = ω

√
µ0ε1. Time harmonic [exp(−jωt)]

electromagnetic plane wave has been considered as source of excitation
and time dependency has been suppressed through out the discussion.
Incident field is given as

Ei
z = ej(ki

xx−ki
0yy) (1)
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Figure 1. Geometry of buried PEMC cylinder inside a dielectric half
space.

The reflected and transmitted fields from the dielectric interface, as if
no cylinder is not present, are

Er
z = R01(ki

x)ej(ki
xx+ki

0yy) (2)

Et
z = T01(ki

x)ej(ki
xx−ki

1yy) (3)

where R01 and T01 are the coefficients of the reflected and transmitted
fields respectively and are given as

R01(ki
x) =

[
ki

0y − ki
1y

ki
0y + ki

1y

]
ej2ki

0yd (4a)

T01(ki
x) =

[
2ki

0y

ki
0y + ki

1y

]
ej(ki

0y−ki
1y)d (4b)

Incident field in terms of cylindrical coordinates (ρ, φ) is given as

Ei
z = ejk0ρ cos(φ−φi) (5)

φi is the angle of incidence with respect to the horizontal axis. The
transmitted field into the region 1 is given as

Et
z = T01(ki

x)ejk1ρ cos(φ−φi) (6)

2.2. Scattered Fields in Region 1

The incident field (TMz) for the PEMC cylinder may be written in
terms of cylindrical wave functions as

Ei
z =

∞∑
n=−∞

jnJn(k1ρ)ejn(φ−φi) (7)
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H i
φ =

1
jη0

∞∑
n=−∞

jnJ ′
n(k1ρ)ejn(φ−φi) (8)

Jn(.) is the Bessel function and prime represents the derivative with
respect to the argument. The scattered fields by the PEMC cylinder
may be assume in terms of unknown coefficients as

Es
z =

∞∑
n=−∞

jnbnH(1)
n (k1ρ)ejn(φ−φi) (9)

Hs
φ =

1
jη0

∞∑
n=−∞

jnbnH(1)′
n (k1ρ)ejn(φ−φi) (10)

Hs
z = − j

η0

∞∑
n=−∞

jncnH(1)
n (k1ρ)ejn(φ−φi) (11)

Es
φ =

∞∑
n=−∞

jncnH(1)′
n (k1ρ)ejn(φ−φi) (12)

where bn and cn are the unknown scattering coefficients of the co-
polarized and cross-polarized scattered fields respectively.

The scattered field from the an isolated PEMC cylinder may be
obtained by considering field given in Equations (7) and (8) as being
incident upon a PEMC cylinder and by assuming that PEMC cylinder
is in a homogeneous medium. It may be noted that unlike for PEC
cylinder or PMC cylinder, the scattered field from a PEMC contains
TEz fields in addition to the TMz fields for TMz excitation [37].

The unknown scattering coefficients may be calculated by applying
the boundary conditions at the surface of the PEMC cylinder.
The boundary conditions for the tangential components and radial
components, at the surface of PEMC cylinder are given as [28, 37]

H i
t + MEi

t + Hs
t + MEs

t = 0 (13)
ε0E

i
r − Mµ0H

i
r + ε0E

s
r − Mµ0H

s
r = 0 (14)

where M is the admittance of the PEMC. Subscript t in equation (13)
stands for tangential component while subscript r in equation (14)
stands for radial component. Putting (7) through (12), in (13) and
solving we get

bn = −H
(1)
n (k1a)J ′

n(k1a) + M2η2
0Jn(k1a)H(1)′

n (k1a)

(1 + M2η2
0)H

(1)
n (k1a)H(1)′

n (k1a)
(15)

cn =
2Mη0

πk1a(1 + M2η2
0)H

(1)
n (k1a)H(1)′

n (k1a)
(16)
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Thus by using bn and cn, in equations (9) and (12), we can get the co-
polarized and cross-polarized scattered fields from an isolated PEMC
cylinder respectively. The scattered fields given in equations (9) to (12)
may easily be written to account for the spectrum of incident plane
waves by integration over kx. Integrating the eigenfunction solutions
in (9) and (12), over kx and using the appropriate weighting from (6),
the initial scattered co-polarized field, for half space geometry, becomes

Es1
z =

∫ ∞

−∞

∞∑
n=−∞

jnbnH(1)
n (k1ρ)ejn[φ−tan−1(−ki

1y/ki
x)][T01δ(kx − ki

x)]dkx

=
∞∑

n=−∞
jnbnC(1)

n H(1)
n (k1ρ)ejnφ (17)

Similarly the initially scattered cross-polarized field becomes

Es1
φ =

∫ ∞

−∞

∞∑
n=−∞

jncnH(1)′
n (k1ρ)ejn[φ−tan−1(−ki

1y/ki
x)][T01δ(kx − ki

x)]dkx

=
∞∑

n=−∞
jncnC(1)

n H(1)′
n (k1ρ)ejnφ (18)

where
C(1)

n = T01(ki
x)e−jn tan−1(−ki

1y/ki
x) (19)

equations (17) and (18) are the scattered co- and cross-polarized fields
resulting from the first interaction of the incident field with the buried
PEMC cylinder.

Subsequent discussion takes into account multiple interaction
between the cylinder and dielectric interface separating the two
half spaces. Using the integral representation of H

(1)
n (k1ρ)ejn(φ),

Equations (17) and (18) may be expanded into their spectral
representation as [11, 40]

Es1
z =

1
π

∫ ∞

−∞

1
k1y

ej(kxx+k1yy)
∞∑

n=−∞
bnC(1)

n ejn tan−1(k1y/kx)dkx (20)

Es1
φ =

j

π

∫ ∞

−∞

1
k1y

ej(kxx+k1yy)
∞∑

n=−∞
cnC(1)

n ejn tan−1(k1y/kx)dkx (21)

Above equations show the linear combination of co- or cross-polarized
plane waves propagating in +y direction, specifically determined by kx

and incident upon the interface from below. Downward traveling waves
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which are reflected by the interface can be obtained by incorporating
the reflection coefficient and are given as

Ẽs1
z =

1
π

∫
kx

1
k1y

∞∑
n=−∞

bnC(1)
n ejn tan−1(k1y/kx)[R10(kx)ej(kxx−k1yy)]dkx

(22)

Ẽs1
φ =

j

π

∫
kx

1
k1y

∞∑
n=−∞

cnC(1)
n ejn tan−1(k1y/kx)[R10(kx)ej(kxx−k1yy)]dkx

(23)
The reflection coefficient R10(kx) is given as

R10(kx) =
k1y − k0y

k1y + k0y
e−2jk1yd

where k0y =
√

k2
0 − k2

x and k1y =
√

k2
1 − k2

x. The superposition
of downward traveling plane waves given in (22) and (23), become
incident upon the cylinder. Once again, the known eigenfunction
solutions for a PEMC, cylinder with plane waves incident are employed.
When the superposition of downward traveling waves described by
(22), become incident upon the cylinder, it radiates both co- and
cross-polarized fields. Thus we have to use (9) and (12), for the
scattered fields. Again integrating (9) and (12), over kx and using
the appropriate weighting from (22), the second order scattered fields
by the cylinder may be written as

Es2
z =

∞∑
n=−∞

jnbnH(1)
n (k1ρ)ejn(φ)

[
1
π

∞∑
m=−∞

bmC(1)
m I(m,n)

]
(24)

Es2
φ =

∞∑
n=−∞

jncnH(1)′
n (k1ρ)ejn(φ)

[
1
π

∞∑
m=−∞

bmC(1)
m I(m,n)

]
(25)

where

I(m,n) =
∫

kx

1
k1y

R10(kx)ejm tan−1(k1y/kx)e−jn tan−1(−k1y/kx) (26)

We may write (24) and (25) as

Es2
z =

∞∑
n=−∞

jnbnH(1)
n (k1ρ)ejnφ

[
C(2)

n

]
(27)

Es2
φ =

∞∑
n=−∞

jncnH(1)′
n (k1ρ)ejnφ

[
C(2)

n

]
(28)
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where

C(2)
n =

1
π

∞∑
m=−∞

bmC(1)
m I(m,n) (29)

Similarly for the downward traveling plane wave spectrum described by
(23), the scattered co- and cross-polarized fields are obtained following
the same procedure adopted to obtain equations (9) to (12) and (24)
to (29), we get

Es2
z =

∞∑
n=−∞

jnbnH(1)
n (k1ρ)ejnφ

[
D(2)

n

]
(30)

Es2
φ =

∞∑
n=−∞

jncnH(1)′
n (k1ρ)ejnφ

[
D(2)

n

]
(31)

where

D(2)
n =

j

π

∞∑
m=−∞

cmD(1)
m I(m,n) (32)

and
D(1)

n = C(1)
n

Hence the second order total scattered co-polarized and cross-polarized
fields are given as

Es2
z =

∞∑
n=−∞

jnbnH(1)
n (k1ρ)ejnφ

[
C(2)

n + D(2)
n

]
(33)

Es2
φ =

∞∑
n=−∞

jncnH(1)′
n (k1ρ)ejnφ

[
C(2)

n + D(2)
n

]
(34)

In general the qth order total scattered co-polarized and cross-
polarized fields may be written as

Es(q)
z =

∞∑
n=−∞

jnbnH(1)
n (k1ρ)ejnφ

[
C(q)

n + D(q)
n

]
(35)

E
s(q)
φ =

∞∑
n=−∞

jncnH(1)′
n (k1ρ)ejnφ

[
C(q)

n + D(q)
n

]
(36)

where

C(q)
n =

1
π

∞∑
m=−∞

bmC(q−1)
m I(m,n) (37)

D(q)
n =

j

π

∞∑
m=−∞

cmD(q−1)
m I(m,n) (38)
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Equations (37) and (38), show that the qth coefficients are found in
terms of (q − 1)th coefficients, indicating the recursive nature of this
solution for the cylinder. Thus the total scattered co-polarized field by
the PEMC cylinder, inside the dielectric half space is written as

E(tot)
z =

∞∑
q=1

Es(q)
z

=
∞∑

q=1

∞∑
n=−∞

jnbnH(1)
n (k1ρ)ejnφ

[
C(q)

n + D(q)
n

]
(39)

E(tot)
z =

∞∑
n=−∞

jnbnH(1)
n (k1ρ)ejnφ [Cn + Dn] (40)

In a similar way, we can get the total scattered cross-polarized field by
PEMC cylinder inside the dielectric half space as

E
(tot)
φ =

∞∑
n=−∞

jncnH(1)′
n (k1ρ)ejnφ [Cn + Dn] (41)

where in equations (40) and (41) we have

Cn =
∞∑

q=1

C(q)
n

Dn =
∞∑

q=1

D(q)
n

2.3. Scattered Fields in Region 0

In order to compute the the scattered fields in region 0, the scattered
field in region 1 is first expanded into spectral representation. Using
the integral expansion of H

(1)
n (k1ρ)ejnφ, the scattered co-polarized and

cross-polarized fields of equations (40) and (41), after simplification
become

E0
z =

1
π

∫
kx

1
k1y

ej(kxx+k0yy)
∞∑

n=−∞
bn[Cn + Dn]ejn tan−1(k1y/kx)dkx (42)

E0
φ =

j

π

∫
kx

1
k1y

ej(kxx+k0yy)
∞∑

n=−∞
cn[Cn + Dn]ejn tan−1(k1y/kx)dkx (43)
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Figure 2. Scattered co-polarized field.
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Figure 3. Scattered cross-polarized field.
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The spectrum of upward traveling waves described by equations (42)
and (43), are transmitted through the interface and scaled by the
transmission coefficients to produce the scattered co- and cross-
polarized fields in Region 0. Once the transmission coefficients are
included, the scattered fields in Region 0 may be expressed as

E0
z =

1
π

∞∑
n=−∞

bn[Cn + Dn]It
n (44)

E0
φ =

j

π

∞∑
n=−∞

cn[Cn + Dn]It
n (45)

where
It
n =

∫
kx

1
k1y

T10(kx)ejn tan−1(
k1y
kx

)ej(kxx+k0yy)dkx

T10(kx) =
2k1y

k0y + k1y
ej(k0y−k1y)d

3. SIMULATIONS

Buried PEMC circular cylinder with Mη0 = −1 has been considered for
analysis. We have considered TM plane wave as source of excitation.
Figure 2 contains the co-polarized far zone scattered field for different
values of permittivities of host medium, angle of excitation and depth
of the buried cylinder. Figure 3 contains the cross-polarized far zone
scattered field for different values of permittivities of host medium,
angle of excitation and depth of the buried cylinder. To obtain
the plots, the specular component of the initial reflected wave from
the interface has not been included. In order to calculate the far-
field scattering pattern, the highly oscillatory integrals It

n, has been
evaluated using the saddle point method of integration [41].
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