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Abstract—An analytical model of a composite dielectric presented
in this paper is the extension of Maxwell Garnett formulation. It
takes into account the simultaneous statistical (Gaussian) distribution
of conductivity and aspect ratio of inclusions. The inclusions are
randomly oriented elongated conducting spheroids at concentrations
below the percolation threshold. The formulation presented herein is
limited to microwave frequencies. However, taking subtle frequency-
dependent effects that play important part at optical frequencies
into account is straightforward. Some results of computations of
microwave complex effective permittivity of composites with different
input parameters have been obtained using analytical and numerical
integration in Maple 10 software. It is shown how the parameters
of the distribution laws — mean values and standard deviations of
aspect ratio and conductivity — affect the resultant complex effective
permittivity. The results of computations demonstrate that the most
important factors affecting frequency characteristics of microwave
effective permittivity are the mean values of the aspect ratio and
conductivity. As for the standard deviations of aspect ratio and
conductivity, their effects are the most noticeable in the transition
between the static and optical limits of the Debye characteristic for
the effective permittivity. There is almost no effect in the static and
“optic” regions of the Debye curves.
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Notations

a = l/d - aspect ratio of the inclusions (ratio of the length to the
diameter);
a0 - mean value of the aspect ratio;
σa - standard deviation of the aspect ratio;
σe [S/m] - bulk conductivity of an inclusion;
σe0 [S/m] - mean value of the bulk conductivity;
σc [S/m] - standard deviation for the bulk conductivity;
n [m−3] - total concentration of inclusions;
fi - volume fraction of the inclusions of the particular size and
conductivity;
Ni1,2,3 - depolarization form factors of inclusions;
εb - relative permittivity of the base material;
εeff - effective permittivity of the composite material.

1. INTRODUCTION

This paper is a continuation of the study of frequency characteristics
of composite dielectrics comprised of a dielectric base (host) material
and conducting inclusions in the form of elongated spheroids [1, 2].
In paper [1], the model of the effective permittivity of composites
containing conducting inclusions at optical frequencies was developed.
This model is based on the Maxwell Garnett (MG) formulation and
takes into account a number of subtle effects in metal inclusions in
the optical range. These include the skin effect, the Drude frequency
dependence, the effects related to the mean free path of electrons
in nanometer-size conductors, as well as dimensional resonances and
radiation associated with the length of inclusions. Some results of
modeling in the optical range with statistically distributed aspect
ratios of inclusions are also presented in [2]. It is shown that the
wider standard deviation for aspect ratios broadens the bandwidth of
absorption. It has also been shown that the shape and magnitude of
an absorption curve depends on the mean value of the aspect ratio,
the conductivity of inclusions, the concentration of inclusions, as well
as the frequency characteristics of the base material.

It is known that in the composites with inclusions of lower
conductivities, the maximum peak of absorption is observed at
the lower frequencies. In contrast, the increase of conductivity
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leads to the absorption peak shift to the higher frequencies [1–
3]. To widen the bandwidth of absorptive properties of composites
at both microwave and optical frequencies, it may be favorable to
have mixtures of inclusions with different conductivities, including
statistically distributed conductivities. From this point of view, it
is important to consider the case, when both the aspect ratio and
conductivity of inclusions are statistically distributed.

Engineering of microwave composite materials for different
applications, such as electromagnetic shields, gaskets, printed circuit
boards, microwave filtering devices, antenna radomes, etc., is an
important practical problem [3–5]. The typical main requirements to
shielding materials are their high shielding effectiveness, broadband
performance, and omnidirectional behavior with respect to the angles
of incidence of electromagnetic waves. Carbon inclusions are used as
fillers in absorbing materials for microwave applications [3, 6–9], though
properties of such materials have not been investigated extensively in
the open literature. A peculiarity of carbon-filled composites is that
the conductivity of carbon inclusions typically varies over a wide range,
even if all carbon particles are obtained during the same technological
process (e.g., exposed to burning during the same time). Hence, it is
very important to know how the parameters of distribution laws —
mean values and standard deviations of aspect ratio and conductivity
— affect the resultant complex effective permittivity.

It should be mentioned that the optical frequency effect of
statistical distribution of inclusion conductivity is also very important.
Though most of the metals typically used as fillers of composites
(Ag, Au, Pt, Al, Cu, etc.) at optical frequencies have more or
less homogeneous bulk conductivity of inclusions [2], impurity and
roughness of metal surfaces of inclusions lead to the increased
statistical distribution of inclusion conductivities.

The objective of this paper is to include the abovementioned
double statistical distribution in the Maxwell Garnett model, and
thereby obtain computational results to study the main trends
in frequency characteristics resulting from this double statistical
distribution. Assume that all the inclusions are randomly oriented
in the three-dimensional space, their concentration is below the
percolation threshold, the size of inclusions is small compared to
the wavelength, and, finally, the inclusions may neither move, nor
change their shape and other parameters with time. These limitations
allow for using the Maxwell Garnett formulation [10–12]. Herein,
only microwave properties of composites are studied, where the
Drude effect, the mean-free-path effect, and dimensional resonances
[1] in the particles can be neglected. This facilitates retrieving the
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basic effects associated with the double statistical distribution of the
abovementioned parameters. However, skin effect in the inclusions
may start playing an important part as frequencies increase (e.g., in
the THz region), so in general it is taken into account. Also, for the
sake of simplicity, the base dielectric is assumed here as lossless and
non-dispersive.

Section 2 describes a mathematical model of the composite
taking the double statistical distribution into account. The results
of calculations based on this model are presented and discussed in
Section 3. The conclusions are summarized in Section 4.

2. MATHEMATICAL MODEL

The Gaussian distribution law with respect to the bulk d.c. electric
conductivity σe of conductive inclusions is

p(σe) =
1√

2πσc

exp

(
−(σe − σe0)2

2σ2
c

)
, (1)

where σe0 is the mean bulk conductivity, and σc is the standard
deviation for the conductivity.

If there is a double Gaussian distribution with respect to the
conductivity σe and aspect ratio a, the two-dimensional probability
density is

p(a, σe) =
1

2πσcσa
exp

(
−(σe − σe0)2

2σ2
c

)
exp

(
−(a − a0)2

2σ2
a

)
, (2)

where a0 is the mean aspect ratio of inclusions, and σa is the standard
deviation for aspect ratio.

The volume fraction of the inclusions for a particular conductivity
σe and aspect ratio a is then proportional to the following two-
dimensional probability density,

fi(a, σe) = nvi(a)p(a, σe), (3)

where n is the concentration, consisting of the total number of
inclusions per-unit-volume, and vi(a) is the volume of an individual
inclusion.

Based on the MG representation given in [2], the effective
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permittivity can be written as

εef = εb +

1
3

amax∫
amin

σe max∫
σe min

ηi(σe)εbfi(a, σe)
3∑

k=1

1
1 + ηi(σe)Nik(a)

dσeda

1 − 1
3

amax∫
amin

σe max∫
σe min

ηi(σe)fi(a, σe)
3∑

k=1

Nik(a)
1 + ηi(σe)Nik(a)

dσeda

,

(4)
where the coefficient

ηi(σe) =
εi(σe)

εb
− 1 (5)

depends on the relative permittivities of the base material εb and the
material of a conducting inclusion

εi(jω) = ε′i − j
σe

ωε0
≈ −j

σe

ωε0
. (6)

The limits of integration in (4) are chosen in a reasonable way for
the Gaussian distribution as

amin = a0 − 3σa and amax = a0 + 3σa;
σe min = σe0 − 3σc and σe max = σe0 + 3σc.

(7)

If the inclusions are in the form of elongated prolate spheroids (rods),
their form factors in (4) can be calculated through their aspect ratio
using the simplified formula derived based on formulations in [11, 13],

Ni1 = Ni2 =
1 − Ni3

2
; Ni3 =

1
2
·
ln

(
a +

√
a2 − 1

a −
√

a2 − 1

)
a − 2

√
a2 − 1

(√
a2 − 1

)3 . (8)

When considering frequencies where the skin-effect is important, e.g.,
the THz frequency band, the mean bulk conductivity σe0 in the above
formulation should be replaced by the effective conductivity that takes
the skin-effect into account, as in [14].

σe0 → σskin = σe0 ·
1 − j

∆
J1((1 + j)∆)
J0((1 + j)∆)

;

∆ =
d

2δskin
=

d

2

√
ωµaσe0

2
;

(9)

where J0 and J1 are the zero and first order Bessel functions of the
first kind, and µa = µ0µr is the absolute permeability of inclusions (if
they are non-magnetic, then µa = µ0 = 4π · 10−7 H/m).
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3. RESULTS OF COMPUTATIONS

Some computational results for the effective permittivity of composite
dielectrics at microwave frequencies with statistically distributed
aspect ratios and conductivity of inclusions are presented in this
Section. A diphasic mixture is considered. It is comprised of a base
material, which is a non-dispersive dielectric (e.g., Teflon, εb = 2.2),
and of conducting inclusions in the form of elongated spheroids (rods)
corresponding to the depolarization form factors (8). The rods are
assumed to be made of carbon. In these computations the skin-effect,
dimensional resonances, and other subtle effects for conductivity in
conducting inclusions are negligibly small.

Figure 1 demonstrates frequency dependence of the complex
effective permittivity for two cases: (1) very narrow statistical
distributions for both aspect ratio and conductivity (standard
deviations are σa = 1 and σc = 10 S/m, respectively), and (2) both
the aspect ratio and the conductivity of inclusions are statistically
undistributed. It is seen from the figure that the corresponding real
and imaginary parts of the effective permittivity practically coincide for
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Figure 1. Frequency dependence of the effective permittivity for very
narrow statistical distributions of both aspect ratio and conductivity,
compared with the effective permittivity for an undistributed case
(aspect ratio = 100, bulk conductivity of inclusion is 106 S/m).
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both cases. This expected result serves as a test for the computational
correctness. The mean aspect ratio in the statistically distributed case
is the same as the aspect ratio in the undistributed case (a0 = a = 100),
and the mean conductivity in the statistically distributed case is the
same as in undistributed case σe0 = σe = 0. The curves in Figure 1
obviously must be very close, since very narrow distributions converge
to the undistributed case.

As is seen from Figure 1, the calculated frequency dependence for
the real and imaginary parts of the effective permittivity follow the
Debye law for dielectrics [15],

εeff = εeff∞ +
εeff s − εeff∞
1 + jωτeff

, (10)

where εeff s and εeff∞ are the static and “optic” limit permittivities,
τeff is the Debye relaxation constant, and ω = 2π · f is the angular
frequency. The parameters of the Debye (or Debye-like) curves —
εeff s, εeff∞, and τeff — can be simply estimated by visual inspection of
the curves, or in slightly distorted cases may be easily extracted using
optimization procedures based on the genetic algorithm, as described
in [5, 16–18]. The Debye-like behavior of composites containing
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Figure 2. Comparison of effective permittivity curves for double
statistical distribution and one of the distributions (aspect ratio only
— narrow distribution, and conductivity only).
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conducting rods may be explained by an analogy between the molecules
of natural polar dielectrics and polarization of the induced dipoles in
the inclusions of artificial dielectrics. Polarizability of an individual
rod increases with the increase of its aspect ratio, and also with the
increase of its bulk conductivity.

Figure 2 shows the frequency dependence of the effective
permittivity for three different cases: (1) aspect ratio is distributed
statistically with a comparatively low standard deviation (σa =
10), while conductivity is homogeneous (σe = 106 S/m); (2) the
conductivity is statistically distributed (σc = 104 S/m), but the aspect
ratio is homogeneous (a = 100); (3) both the aspect ratio and the
conductivity of inclusions are distributed statistically (σa = 10 and
σc = 104 S/m). The corresponding curves for all three cases almost
coincide, because the statistical distribution of the aspect ratio is
the dominant effect, and the corresponding standard deviation is
comparatively narrow, close to the undistributed case. Also, it is
seen that the standard deviation for conductivity might not affect
the resultant effective permittivity characteristics. This hypothesis is
tested below.

Figure 3 shows that the standard deviation of the aspect ratio
has some impact on the effective permittivity of the composite. As
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Figure 3. Effective permittivity curves for different standard
deviations of the aspect ratio in the double Gaussian distribution.
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Figure 4. Effective permittivity versus frequency for different
standard deviation of inclusion conductivity (σc = 2.5 · 104 S/m and
σc = 102 S/m).

is seen from the figure, with the increase of the standard deviation
σa, the magnitudes of the static relative effective permittivity and of
the maximum loss increase slightly. It is also seen that the frequency
dependence of the imaginary part becomes wider, and the frequency of
the maximum loss shifts to the lower frequencies. This can be explained
by the fact that σa determines the Q-factor of the material. When σa

increases, the Q-factor decreases, and the corresponding frequency of
the maximum loss shifts to the left.

Figure 4 shows that when the standard deviation is much smaller
than the mean conductivity of inclusions σc/σe0 � 1, the standard
deviation of conductivity has almost no impact upon the effective
permittivity characteristics. In Figure 4, there is almost no difference
between the curves corresponding to σc/σe0 = 2.5 · 10−2 and σc/σe0 =
10−4.

Figure 5 shows a pronounced effect of the mean value of the aspect
ratio on frequency characteristics of the effective permittivity. The
higher aspect ratios increase the values of the real static effective
permittivity and the maximum loss. In addition, increasing the
mean aspect ratio shifts the frequency of the maximum loss to the
lower frequencies. This is an expected result. The mechanical
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Figure 5. Frequency characteristics of effective permittivity for
various values of the mean aspect ratio.

analogy with oscillating particles in a viscous liquid, which leads
to the Debye frequency dependence, can explain this phenomenon.
The dipole moment associated with an inclusion’s polarizability is
responsible for “inertia” at higher frequencies. The longer inclusions
have more inertia, causing the decrease of the real part of the effective
permittivity to occur at lower frequencies. The steepest slope of the
real permittivity versus frequency corresponds to the frequency where
the maximum in the curve for the imaginary part of permittivity takes
place. This is the frequency of the maximum loss.

Figure 6 shows the effect of changing the concentration of
inclusions. When the concentration of inclusions in the composite
with the parameters indicated in Figure 6 increases by one order of
magnitude (e.g., from 1014 to 1015 m−3), the real static permittivity
increases approximately five times. The maximum loss increases by a
similar factor. However, a change in the concentration does not affect
the frequency of the maximum loss. In all these cases the concentration
used was below the percolation threshold.

Figure 7 demonstrates that there is a pronounced effect of the
mean bulk conductivity of inclusions upon the effective permittivity
curves. Though the static and “optic” values of real permittivity are
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Figure 6. Frequency characteristics of effective permittivity for
different inclusion concentrations.
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nearly unaffected by the change in bulk conductivity, the frequency
of the maximum loss for smaller conductivities is shifted to the lower
frequencies, and the maximum loss (or ε′′eff ) increases with the decrease
of the bulk conductivity. This is also an expected result: the lower the
conductivity, the lower is the frequency where the efficient absorption
is observed [1, 3].

As is seen from Figure 7, the effect of the ratio of the standard
deviation of conductivity to the mean bulk conductivity of inclusions
(σc/σe0) is pronounced. The frequency of maximum loss is shifted to
the lower frequencies for smaller conductivity. There is an effect of
the ratio of the standard deviation to the bulk conductivity on the
“tails” of the real effective permittivity frequency characteristics. For
the first, second, and third curves, the ratio is σc/σe0 = 10−4, 10−3, and
10−2, respectively, while σe0 = 106 S/m remains the same. These three
curves almost do not differ, since the ratio σc/σe0 remains small. The
frequency of the maximum of loss is determined by σe0 = 106 S/m,
and it is f = 1012.3 = 2 · 1012 Hz. For the fourth curves, the
bulk conductivity is minimal, σe0 = 104 S/m, and the frequency of
maximum loss is f = 31.6 GHz. For the ratio σc/σe0 = 10−1, the
“tail” of the real part of the effective permittivity is elevated. The
fifth curves are intermediate between the curves 1-3 and the curve 4,
because the bulk conductivity in this case is σe0 = 105 S/m. Since
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the ratio σc = σe0 = 10−1 is the same as for the fourth curves, the
distortion of the “tail” of the real part is also the same.

The effect of the mean bulk conductivity of inclusions on the
effective permittivity curves is seen in Figure 8. The mean aspect
ratio for the inclusions in this case is higher than in the previous
graphs, a0 = 500. The static real permittivity and the peak imaginary
permittivity for a0 = 500 are much higher (∼75 times) than in Figure 7,
where a0 = 100. Three values of the bulk conductivity are considered:
σe0 = 104, 105, and 106 S/m. The standard deviation for conductivity
is the same for all three sets of curves, and the deviation of the aspect
ratio is also the same. As in the previous cases, the frequency of the
maximum loss is shifted to lower frequencies for smaller values of the
bulk conductivity. The maximum value of the imaginary permittivity
ε′′eff increases slightly with the decrease of the bulk conductivity.

Figure 9 contains graphs of the effective permittivity as a
function of the standard deviation of conductivity at three different
frequencies: f = 100 MHz (static part of the Debye dependence,
where ε′eff ≈ εeff s), f = 2 GHz (the slope of the Debye frequency
characteristic, where εeff∞ < ε′eff < εeff s, and ε′′eff ≈ ε′′eff max), and
f = 1012 Hz (“optic” limit in the Debye dependence, where ε′eff ≈
εeff∞), respectively. As is seen from the figures, there is a significant
effect of the standard deviation of conductivity only at the slope of the
Debye curve, which corresponds to Figure 9 (b). This effect can be
explained as follows. It is the mean bulk conductivity of an inclusion
that is responsible for its polarizability. At the lower frequencies, all
the inclusions-dipoles are agile enough to follow oscillations of the
electric field. “Inertia” of the dipoles is not affected by the charges
accumulated on the ends of the rods. At very high frequencies (“optic”
limit) almost all dipoles, independently of conductivity, cannot follow
very fast variations of the electric field, and they almost do not re-
orient. This leads to the decrease of both ε′eff and ε′′eff . However, when
the frequency is at the slope of the Debye curve, where the dipoles
partially follow the electric field, the effect of conductivity becomes
more substantial. It is interesting that both real and imaginary parts
of the effective permittivity decrease with the increase of the standard
deviation of conductivity. This means that at the wider spread
of conductivity, the higher fraction of inclusions become “heavier”
compared to the case where conductivity of inclusions is homogeneous.

In Figures 10(a, b), showing the effective permittivity as a
function of the mean aspect ratio, the graphs are calculated for three
frequencies, corresponding to three regions of the Debye frequency
dependence: f = 108 Hz (static permittivity), f = 2 · 1012 Hz (the
steepest slope of the Debye dependence), and f = 1013 Hz (“optic”
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Figure 9. Effective permittivity as a function of the standard
deviation of conductivity: (a) f = 108 Hz (static limit of the Debye
dependence); (b) f = 2 · 109 Hz (the steepest slope of the Debye
dependence); (c) f = 1013 Hz (the “optic” limit of the Debye
dependence).
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aspect ratio: (a) real part of the effective permittivity; (b) imaginary
part of the effective permittivity.
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permittivity). The static permittivity ε′eff = εeff s dramatically
increases when the mean aspect ratio becomes higher. This is a
consequence of the increase of a dipole moment associated with the
polarizability of a conducting rod as its aspect ratio increases (length
increases and/or thickness decreases). The loss is relatively small
in the static case ε′′eff s → 0. In the “optic” limit, both the real
(ε′eff = εeff∞) and imaginary (ε′′eff ) permittivities increase slightly as
the mean aspect ratio rises. As for the intermediate frequency range
close to the slope of the Debye curve, the imaginary permittivity (ε′′eff )
increases dramatically with the increase of the mean aspect ratio. The
real permittivity (ε′eff = εeff∞) becomes higher, too. This phenomenon
is related to the elevated polarizability effect, as well as the pronounced
loss at the frequency where approximately half of the dipoles follow
fast oscillations of electric field, and the other half have too much
inertia to react. The absorption mechanism is associated with the
imaginary part of the permittivity, and is related to the accumulation
of electromagnetic energy within an inclusion and further dissipation of
this energy into heat through multiple scattering. The real part of the
permittivity is determined the polarization of dipoles. The dipoles that
follow oscillations of the electric field, contribute to the real part of the
effective permittivity and to the propagation effect in the dielectric.
The dipoles that are “resistant” to oscillations, accumulate energy,
which will eventually dissipate.

Figures 11 and 12 show how the standard deviation of the aspect
ratio affects real and imaginary parts of the effective permittivity.
Figures 11 and 12 differ by the values of the mean aspect ratio and bulk
conductivity. In Figures 11, the values are a0 = 100 and σe0 = 106 S/m,
and the frequency of the steepest slope (maximum loss) is around
2 · 1012 Hz. In Figures 12, the values are a0 = 500 and σe0 = 105 S/m,
and the frequency of the steepest slope (maximum loss) is around
16 GHz. The magnitudes of real and imaginary parts of the effective
permittivity in Figures 12 are much higher than in Figures 11, because
the mean aspect ratio in Figures 12 is five times greater. It is also seen
from the graphs on both figures that the standard deviation of aspect
ratio does not affect much the values of the effective permittivity.
Static permittivity ε′eff = εeff s slightly increases with the increase
of the standard deviation σa. “Optic” limit ε′eff = εeff∞ remains
unchanged and comparatively low. Only when the frequency is at the
steepest slope (maximum loss), the variation in the real permittivity
becomes noticeable: ε′eff slightly decreases in both cases.

Figures 13(a, b) show the linear dependence of the effective
permittivity upon concentration of inclusions. In these computations,
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the volume fraction of inclusions is still below the percolation threshold.
For the composite with the mean aspect ratio of a0 = 100 and
the concentration of inclusions n = 1014 m−3, the calculated volume
fraction of inclusions is around 0.4%, and for the concentration
n = 1015 m−3, the volume fraction is around 4%. Assuming that
the percolation threshold in this case is pc ≈ 5/a = 5%, these
concentrations of inclusions are still below the percolation threshold.
The concentration affects most significantly the static real part of the
effective permittivity ε′eff = εeff s and the imaginary part ε′eff at the
frequency of the maximum loss.

4. CONLUSIONS

In this paper, the Maxwell Garnett mixing rule is extended for a
composite material containing conducting elongated spheroids (rods)
with a double statistical distribution of aspect ratio and bulk
conductivity of inclusions. This model includes normal (Gaussian)
distribution functions instead of summations over the types of
inclusions in the MG multiphase mixture formulation. The results
of computations for microwave frequencies show that the mean values
of the aspect ratio and the bulk conductivity of inclusions substantially
affect frequency characteristics of composites. At the same time,
standard deviations for the aspect ratio and conductivity only slightly
change frequency characteristics, and these effects can be mostly
observed closer to the frequency of the steepest slope (maximum loss)
of the corresponding Debye curves for the effective permittivity of the
composite.
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