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Abstract—A new hybrid technique for optimization of a multivariable
function is proposed. This method is applied to the problem of complex
time Green’s function of multilayer media. This technique combines
Particle Swarm search algorithm with the gradient based quasi-Newton
method. Superiority of the method is demonstrated by comparing its
results with other optimization techniques.

1. INTRODUCTION

A group of popular and powerful approaches for search and
optimization problems are Evolutionary Algorithms (EAs) [1, 2].
During the past decades, EAs have been widely used in many
engineering applications [3, 4], and recently in electromagnetic
problems [5–9]. Particle Swarm Optimization (PSO) is one of the
evolutionary computation techniques. It was developed to simulate
a simplified social system [10]. PSO is a powerful and promising
optimization method which has a wide range of applications in
engineering optimization including electromagnetic and antenna design
problems [11, 12]. Like the other evolutionary computation techniques,
PSO is a population-based search algorithm which is initialized with
a population of random solutions, called particles. Unlike other
evolutionary computation techniques, each particle in PSO has its
own velocity. Particles fly through the search space with velocities
which are dynamically adjusted according to their historical behaviors.
Therefore, the particles have a tendency to fly toward a better region
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of search space over the course of search process. It is also shown that
PSO converges faster than genetic algorithm (GA) [13].

In this paper, a hybrid PSO-Gradient technique is used for
optimization of complex time Green’s functions expansion in multilayer
media.

The remaining sections of this paper are organized as follows:
Section 2 reviews the Green’s function of a grounded dielectric slab.
Section 3 describes the PSO, gradient based algorithms and our hybrid
methodology. The achieved results are explained in Section 4. Finally,
section 5 concludes the paper.

2. GREEN’S FUNCTION OF A GROUNDED
DIELECTRIC SLAB

The fast and efficient time domain analysis of microstrip structures
is one of the most challenging problems in microwave planar circuit
analysis. A closed-form wideband representation of the spatial Green’s
functions for a horizontal electric dipole (HED) over a grounded
dielectric slab was first developed in [14, 15]. In this representation
the Green’s function is given in the form of a series expansion valid
for a wide range of frequencies in contrast to the conventional spatial
complex images which is only valid at a single frequency.
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Figure 1. A HED over a grounded dielectric slab.

The geometry of the problem is depicted in Fig. 1. Vector and
scalar Green’s functions in the air region is needed for analyzing
this structure using conventional Mixed Potential Integral Equation
(MPIE) technique. The spectral domain Green’s functions for
magnetic vector potential, G̃xx

A , and electrical scalar potential, G̃q, can
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be represented as [16]
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The corresponding spatial domain Green’s functions are the
inverse Hankel transform of (1). These inverse transforms are in the
form of Sommerfeld’s integrals. They are as follows:
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where, r0 =

√
ρ2 + (z − z0)2.

Because of oscillatory behavior of these types of integrals, their
numerical computation is time consuming. It can be shown that the
following series approximation of RTE and Rq could obviate the need
of numerical calculation of these integrals. These series are also valid
in a wide range of frequencies from 0 to f0. This representation has
the interesting meaning of complex time [14, 17]:

RTE −RTE0
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The an, bn, cn coefficients must be chosen in such a way that the
two dimensional exponential expansion of (6) has a small error over
the rectangular area of 0 ≤ u ≤ u0, 0 < f ≤ f0. Therefore, the fitness
function could be represented as follows.
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With substituting (6) into (5) and using Sommerfeld’s identity one
can simply attain the following representations for the spatial domain
Green’s functions valid for 0 < f ≤ f0.
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3. HYBRID SWARM INTELLIGENCE-GRADIENT
OPTIMIZATION TECHNIQUE

3.1. Particle Swarm Algorithm

The Particle Swarm Optimizer is a swarm intelligence algorithm that
emulates a flock searching over the solution landscape. This algorithm
uses sampling points in search space and the swarm converges to the
most promising regions. A particle moves through the solution space
along a trajectory defined by its velocity [18]. The basic structure of a
particle in PSO is significantly more complex than a member of a GA
population. A particle consists of five components:

• x, a vector containing the current location in the solution space.
The size of x is dictated by the number of variables used by the
problem being solved.

• fitness, the quality of the solution represented by the vector x,
as computed by a problem-specific evaluation function.

• v, a vector containing the velocity for each particle. The velocity
of a particle indicates the changes of the corresponding x vector
(particle location) in the next iteration. Altering the v vector
values assigns the direction that the particle will move through
the search space.

• gbest, is the fitness value of the best solution attained by a
particular particle. Each particle keeps track of its coordinates
in the problem space, which are associated with the best solution
(fitness) it has achieved so far.

• pbest, is a copy of the x for the location of the best solution
achieved by a particular particle.

Each particle is also aware of gbest, the particle reporting the
current best fitness in the neighborhood for any given iteration.
A neighborhood may consist of some small group of particles.
Alternately, the entire swarm may be considered a single neighborhood,
and gbest applies globally (global PSO). Also, fitnessg is the fitness
value of the gbest.

The PSO begins with a random population and searches for
best fitness just like the genetic algorithm (GA), but in the PSO
algorithm, particles will evolve by cooperation and competition among
the individuals through generations instead of using genetic operators
[19].

The heart of the PSO algorithm is the process by which v is
modified, forcing the particles to search through the most promising
areas of the solution space again and again. On each iteration,
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the previous values of v constitute the particle’s momentum. This
momentum is essential, as it is the feature of PSO that allows particles
to escape local extremums.

At each time step, the velocity of each particle changes toward
the pbest and gbest locations. Moving to these locations is weighted
by a random term, with separate random numbers being generated
for acceleration toward pbest and gbest locations. This randomness
insures that the step size will be varying to avoid aliasing and insure the
particle doesn’t “fall into a rut”, where the particle endlessly follows the
exact same path. The modified velocity and location of each individual
particle can be calculated using the current velocity and the distance
from pbest i to gbest, as shown in the following formula:

vk+1
i = wvk

i + c1r1(pbesti − xk
i ) + c2r2(gbest− xk

i ) (11)

xk+1
i = xk

i + vk+1
i (12)

where xk
i is the current location of individual i at iteration k, which

has vk
i as velocity. This velocity satisfies V min ≤ vk

i ≤ V max. pbest is
the historical best location of xk

i and gbest is the global best location in
the population’s history. Besides, there are five parameters that should
be defined, w is the inertia weighting factor, c1 and c2 are acceleration
constants and r1 and r2 are random number between 0 and 1 with
uniform distribution. The evolution process generally begins with a
random distribution of particles and evolutes as the formulation (11),
(12).

In the above procedures the parameter Vmax determines the
resolution, or fitness, with which regions between the present location
and target location are searched. If Vmax is too high, particles may
fly over the good solutions. If Vmax is too small, particles may not
sufficiently explore beyond local solutions. In previous experience with
PSO, Vmax was often set at 10–20% of the dynamic range of the variable
on each dimension.

The constants c1 and c2 represent the weighting of the stochastic
acceleration terms that pull each particle toward pbest and gbest
locations. Low values allow particles to roam far from target regions
before being tugged back. On the other hand, high values result in
abrupt movement toward, or past, the target regions. Hence, the
acceleration constants c1 and c2 were often set to be 2.0 according
to past experiences.

The complete algorithm for the particle swarm optimizer is shown
in Fig. 2.
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Initialize the swarm: 
for each particle i,

Set xi to a random value  
Set pbest to xi

Set vi to a random value on the range [Vmin , Vmax]
end for 

Perform the search: 
until a terminating condition is met 

for each iteration k,
for each particle i,

compute fitnessi

update gbest and fitnessg if fitnessi is better than fitnessg

update pbest and fitnessp if fitnessi is better than fitnessp

compute vi (Equation (11))
compute xi (Equation (12)) 
end for 

end for 
end while 

Report results 

Figure 2. The basic PSO algorithm.

3.2. BFGS Quasi-Newton Method

An efficient gradient based method for calculating the minimum of a
multivariable function is quasi-Newton method in which we start from
an arbitrary initial point and approximate the function near that point
with a quadratic model as follows:

1
2
xTHx+ cTx+ b (13)

where H is the Hessian matrix, c is a constant vector and b is a constant
scalar. The minimum of this approximated function is:

xo = −H−1c (14)

x0 is the starting point of the next iteration. This procedure continues
until the gradient of the function reaches zero and hence the local
optimum of the function corresponding to the first starting point is
achieved.

Since calculating the exact Hessian matrix on each iteration is
time-consuming, the BFGS method approximates this matrix by the
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following update equation [20–23]:
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qkq
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qT
k sk

− HT
k s

T
k skHk

sT
kHksk

(15)

where,
sk = xk+1 − xk, qk = ∇f(xk+1) −∇f(xk) (16)

This method efficiently minimizes the computation costs.

3.3. Hybrid Approach

The gradient based methods suffer from sensitivity to starting point of
the algorithm. Different starting points may lead to different local
optima. To avoid this problem, we run the BFGS Quasi-Newton
method with different starting points given by the PSO method. The
Block diagram of this hybrid approach is depicted in Fig. 3. In other
words, we apply the PSO algorithm to a new function which has the
information of all local optima of the original function. So this method
searches among the local optima.

4. NUMERICAL RESULTS

The microstrip structure of Fig. 1 is examined with h = 1 mm,
εr = 12.6. For many applications f0 = 20 GHz and u0 = 10 are
good choices, so they are chosen for the simulation. As we expect,
with increasing the number of images N, the proposed algorithm leads
to better approximations but simulation time increases. Numerical
results shows that N = 4 which leads to 24 independent variables,
gives good results. The proposed Hybrid PSO-Gradient method is
applied to the fitness functions of the structure which are represented
by Equations (9a) and (9b). Also, simple genetic algorithm, invasive
weed optimization (IWO) [24] and simple PSO algorithm are applied
to this problem for comparison. As could be seen from Table 1,
the proposed method can find better solutions in comparison with
other algorithms. Also the proposed method finds considerably better
solutions in comparison with the previous results [14, 15].

Figure 4 shows the magnitude of the magnetic vector potential
(10a) versus horizontal distance at four different frequencies for z =
z′ = 0 using the coefficients given by the proposed method (dashed
lines). The direct numerical computation of Sommerfeld’s integral
(5a) is also shown in this figure (solid lines). It can be seen that
the difference between the closed-form Green’s function and numerical
integration is nearly unobservable.
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Figure 3. Block diagram of the proposed hybrid PSO-gradient
method.

Table 1. Best fitness value achieved from different methods.

Method
Best fitness value

RTE Rq

GA 91.7 124
IWO 86.2 115
PSO 64.9 93.9

References [14, 15] 11.8 40.8
PSO-Gradient 7.78 22.9
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Figure 4. The magnitude of the magnetic vector potential.

5. CONCLUSION

A combination of PSO and BFGS gradient based method is used for
the complex time representation of Green’s functions in a grounded
dielectric slab. Numerical results show that the proposed method
have the advantages of both methods. This hybrid method gives
considerably better solutions to the problem compared with other
optimization methods.
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