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Abstract—Vector wave three-dimensional (3-D) conducting rough
surface scattering problem solved by a UV method with multilevel
partitioning (UV-MLP) is developed in this paper. For a 3-D
conducting rough surface scattering problem, the scattering structure
is partitioned into multilevel block. By looking up the rank in the
static problem, the impedance matrix for a given transmitting and
receiving block is expressed into a product of U and V matrix. The
UV method is illustrated by applying to a 3D scattering problem of
random conducting rough surface in this paper. Numerical simulation
results are illustrated.

1. INTRODUCTION

Monte Carlo simulation of wave scattering from random rough surface
problem have become an attractive approach recently, the prob-lem of
scattering from rough surface has been studied with an-alytical solution
[1–3]. Since modern computers technology and fast numerical methods
have greatly been developed. The method of moment (MoM) has been
used in numerical simulation to solve the surface integral equation
method [4–11]. Conventional implementation of the MoM requires an
O(N3) operation and an O(N2) computer memory storage. Two fast
numerical methods have been used and they are the sparse matrix
canonical grid method (SMCG) [7–10] and the Fast Multipole Method
(FMM) [11]. Both methods have been applied to perfect electric
conducting (PEC) and dielectric rough surfaces.

Recently, the UV-MLP is proposed to solve scalar wave
scattering from the PEC rough surface problem in [12, 13] and
dielectric rough surface problem in [14], the UV-MLP method has
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achieved O(N log(N)) based on the interpolation technique. The UV-
MLP has been used to solve the volume scattering problem in [15].

In this paper, the UV-MLP method is developed to solve vector
wave scattering from 3-D conducting rough surface problem. In the
method, the impedance matrix was first be divided into four small
matrices, then the multilevel partitioning (MLP) has been used to
partition the each small impedance matrix. The surface area of the
rough surface when projected onto the xy plane has a surface area up
to 8×8 = 64 square wavelengths with the number of surface unknowns
of 8192. In this case, the MLP used is as done in the multilevel FMM.

The paper is organized as follows. In Section 2.1, the formulation
of the problem of vector elec-tromagnetic wave impinging upon a 3-D
conducting rough surface is given in magnetic field integral equation
(MFIE), which is converted into a ma-trix equation using the MoM.
In Section 2.2, the conducting rough sur-face problem independent
rank determination is discussed. In Section 2.3, the MLP is described
and in Section 2.4, the UV method is described. In Section 2.5, the
computational complexity of the proposed algorithm is derived. In
Section 3, numerical results are illustrated and discussed. Conclusions
are given in Section 4.

2. METHODOLOGY

2.1. Formulation of Vector Wave Scattering from
Conducting Rough Surface

Consider an electromagnetic wave H̄ i(x, y, z), with a time dependence
of e−iωt impinging upon a 3-D conducting rough surface with a random
height profile z = f(x, y). It is tapered so that the illuminated rough
surface can be confined to the surface area Lx×Ly [8]. The direction of
incident wave is k̂i = sin θi cosφix̂+sin θi sinφiŷ−cos θiẑ. The incident
fields are given as

H̄ i(x, y, z) = −1
η

∫ +∞

−∞
dkx

∫ +∞

−∞
dky · eikxx+ikyy−ikzz (1)

Ψ(kx, ky) · ĥ(−kz) (2)

where

ê(−kz) =
1
kρ

(x̂ky − ŷkx) (3)

ĥ(−kz) =
kz

kkρ
(x̂kx − ŷky) +

kρ

k
ẑ (4)
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with kz =
√

k2 − k2
x − k2

y, kρ =
√

k2
x + k2

y. In above, k and η are
wavenumber and wave impedance of free space, respectively. The
spectrum of the incident wave E(kx, ky) is given as

Ψ (kx, ky) =
g2

4π
e

[
−g2

(kx−kix)2+(ky−kiy)2

4

]
(5)

The parameter g control the tapering of the incident wave and is
set to Lx/2 = Ly/2 in the simulations of this paper. However, in (5), a
spectrum of vector plane waves is used so that the incident wave obeys
Maxwell’s equations exactly.

The 3-D random conducting rough surface and with random
height profile z = f(x, y). The height function z = f(x, y) has zero
mean. Let r̄′ = x̂x′ + ŷy′ + ẑf(x′, y′) denote a source point and
r̄ = x̂x + ŷy + ẑf(x, y) denote a field point on the rough surface.
Then the MFIE on the perfectly conducting rough surface for r̄ and r̄′

on the surface is [16]

n̂× H̄(r̄) = 2n̂× H̄ i(r̄) + 2n̂×
∫ ∫

S′
∇g × n̂′ × H̄(r̄′)ds′ (6)

where
∫ ∫

S denote a principal-integral.

∇g = (r̄ − r̄′)G(R) (7)

G(R) =
(ikR − 1)eikR

4πR3
(8)

and R = |r̄ − r̄′| =
√

(x− x′)2 + (y − y′)2 + (z − z′)2
The MoM is used to discretize the integral equation. We use the

pulse basis function and point-matching method. Recasting the MFIE
into scalar form and in terms of Ix and Iy components, we have

Ii
x =

Ix

2
+

∫
S′

(
fy(y − y′) + fx′(x− x′) − (z − z′)

)
G(r, r′)Ix′dS′

−
∫

S′
(fy(x− x′) − fy′(x− x′))G(r, r′)Iy′dS′ (9)

Ii
y = −

∫
S′

(fx(y − y′) − fx′(y − y′))G(r, r′)Ix′dS′

+
Iy

2
+

∫
S′

(
fx(x−x′)+fy′(y−y′)−(z−z′)

)
G(r, r′)Iy′dS′ (10)

so we write the scalar equations into matrix form
¯̄Z · Ī = Īi (11)
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where Ī =
[
Ix′ , Iy′

]−1, Īi =
[
Ii
x, I

i
y

]−1
and

Ix′(r̄) =
√

1 + f2
x′ + f2

y′ n̂′ × H̄(r̄′) · x̂ (12)

Iy′(r̄′) =
√

1 + f2
x′ + f2

y′ n̂′ × H̄(r̄′) · ŷ (13)

Ii
x(r̄) = n̂× H̄ i(r̄) · x̂ (14)

Ii
y(r̄) = n̂× H̄ i(r̄) · ŷ (15)

The impedance matrix ¯̄Z can be further divided into four matrices
( ¯̄Z11, ¯̄Z12, ¯̄Z21, ¯̄Z22), which has been given in Fig. 1.

Figure 1. Illustration of impedance matrix partitioning process.

2.2. Rank Determination for Conducting Random Rough
Surface

For the 3-D conducting rough surface scattering problem, the difficulty
is that the vertical sizes of the blocks are always changed due to the
randomness of surface height. Thus the coarse-coarse are sampling
have to be used to determine the rank. In the simulation, 16 points per
square wavelength (instead of 100 points per square wavelength) are
used for rank determination. In Table 1, the conducting rough surface
area is 8λ×8λ, the ranks as functions of the rms δ, correlation length  
and distance d between two interaction groups are shown. The results
are obtained through one realization of rough surface profile with the
given varied rms height of 0.01λ, 0.05λ, and 0.10λ, varied correlation
length of 0.707λ, 1.414λ and 2.0λ.

Table 1 shows that ranks of Z11, Z12, Z21, Z22, which are slowly
varied with the correlation length  and rms δ of conducting rough
surface. From the table, we can see that maximum value of rank is
associated with the nearest distance d between two group elements, on
the other hand, minimum rank is associated with the remotest distance
d between two group elements.

The minimum value of ranks of both Z11, Z12 and Z21 is 4, which
are independent on the rms δ and correlation length  . The minimum
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Table 1. rank table for variation of rms δ and correlation length of
conducting rough surface.

Z11 Z12 Z21 Z22

δ(λ)  (λ) 1* 2* 1 2 1 2 1 2
0.707 24 4 24 4 24 4 24 4

0.01 1.414 25 4 25 4 24 4 24 3
2.000 23 4 23 4 23 4 22 4
0.707 29 4 31 4 29 4 28 4

0.05 1.414 25 4 25 4 24 4 24 3
2.000 23 4 23 4 23 4 22 4
0.707 30 4 34 4 33 4 30 4

0.10 1.414 25 4 27 4 26 4 24 4
2.000 23 4 24 4 24 4 23 4

1 * Maximum value of ranks;
2 * Minimum value of ranks;

value of ranks of Z22 is 3-4 in Table 1, which is less dependent on the
rms δ and correlation length  variation.

The maximum value of ranks of Z11, Z12, Z21 and Z22 are
dependent on rms δ when the correlation length  is smaller, and
become independent on the rms δ when the the correlation length
 is bigger. On the other hand, the maximum value of ranks of Z11,
Z12, Z21 and Z22 are less dependent on the correlation length  when
rms δ is bigger, and become independent on correlation length  when
the rms δ become smaller.

In the SV D, the rank determination is based on a threshold.
Thus there is built in variation of rank due to variations of threshold.
Furthermore, in applications as illustrated in this paper, the exact rank
is not required. Thus we usually are on the safe side, and use 10% to
20% above the “actual” rank.

We note that the selections of blocks are dependent on the type of
problem. However, once the static rank table is determined, the rank
table can be applied to all cases within the same type of problem.

2.3. Multi-level Partitioning Process

The impedance matrix of conducting rough surface can be divided into
four small matrices ( ¯̄Z11, ¯̄Z12, ¯̄Z21, ¯̄Z22), which can be seen in Fig. 1.
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So each small matrix can used UV-MLP method to increase the code’s
efficiency. In order to sententious explain the MLP, for example, Z11

will be used below.
The MLP for the small ¯̄Z11 is same as the one in the case of 3D

PEC rough surface scattering problem [13], which has been shown in
Fig. 2.

Figure 2. Illustration of impedance matrix partitioning process.

Since each of the four small matrices can be processed through
MLP just like above, the MLP of impedance matrix consisted of four
small matrices can be gotten, which can be shown in Fig. 3.

2.4. UV Method Based on Interpolation Technique

Since the impedance matrix has been divided into four small matrices
( ¯̄Z11, ¯̄Z12, ¯̄Z21, ¯̄Z22), the UV-MLP method can be used to each small
matrix. One of the four small matrices will be given to illuminate the
UV method, for example, ¯̄Z11 will also be used.

¯̄Z11 will be partitioned into multilevel block through MLP, which
has been shown in Fig. 1. Every block except for the 0th level is
decomposed into matrix products. Consider a block ¯̄A of dimensional
N0×N0, which represents the interactions of a transmitting group and
a no-neighbor receiving group. We can use the SVD to determine the
rank. Let σ1 be the largest singular value and the singular value be
arranged in decreasing magnitude. Given a threshold ε, the rank r is
such that σr+1

σ1
≤ ε.

If the size of the block ¯̄A becomes larger, it would consume CPU
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Figure 3. Illustration of impedance matrix partitioning process.

memory intensively. However, generally, the rank is much smaller than
the size of the block. Thus, we can use coarse-coarse sampling for
searching the rank. Namely, we uniformly pick the number of points
in the transmitting group and a set of points in the received group,
and form a new matrix of dimensions that are slightly larger than the
rank, and we find the rank via the new matrix to be roughly same
as that via the block ¯̄A. This means we have a prior knowledge of
roughly what is the rank, based on the numerical experiments carried
out. As an exact rank is not required, in coarse sampling we can pick
the number of points to be several times larger than the rank.

By looking up its rank r with the SVD and fast coarse-coarse
sampling, the block ¯̄A is expressed as

¯̄AN0×N0 = ¯̄UN0×r
¯̄V r×N0 (16)

where ¯̄V r×N0 = (
¯̄̃
U r×r)−1 ¯̄Rr×N0 is calculated by LU decomposition

using Crouts method with partial pivoting instead of an inversion of
¯̄̃
U . The column of ¯̄U are r columns of ¯̄A with uniform distribution, the
rows of ¯̄R are r rows of ¯̄A with uniform distribution, and the rows of
¯̄̃
U are r rows of ¯̄U with uniform distribution.

Generally, the rank of the block is much less than its dimension,
so that in an iterative solution to the matrix equation, using matrices
U and V instead of the block matrix to multiply with a vector, the
computational time and memory requirement can be decreased from
O(N2

o ) to O(2rN0).
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2.5. Computational Complexity Analysis

The impedance matric of conducting rough surface can be divided into
four small matrices ( ¯̄Z11, ¯̄Z12, ¯̄Z21, ¯̄Z22), which can be seen in Fig. 1.
So each small matrix can be used UV-MLP method. In order to
sententious analysis computational complexity of the UV-MLP, one
of the four small matrices is first analyzed, for examples, ¯̄Z11 will be
used.

2.5.1. Computational Complexity Analysis of the ¯̄Z11

The computational complexity analysis of the ¯̄Z11 is just same as
the one in the case 3D PEC rough surface scattering [13]. The total
computational steps for multilevel partitioning UV is sum of the near
and non-near interactions of the ¯̄Z11 and is given by

27rN log2

(
N

M1

)
+ 60rN − 120rM1 +

(
9NM1 − 12N

1
2

)
M

3
2
1 + 4M2

1

(17)

2.5.2. Computational Complexity Analysis of the ¯̄Z

Since computational complexity analysis of one of the four small
matrices ( ¯̄Z11) has been finished above, so the total computational
steps for multilevel UV to the matrix ¯̄Z consisted of four small matrices
( ¯̄Z11, ¯̄Z12, ¯̄Z21, ¯̄Z22) is given by

4×
[
27rN log2

(
N

M1

)
+60rN−120rM1+

(
9NM1 − 12N

1
2

)
M

3
2
1 +4M2

1

]

(18)

3. NUMERICAL RESULTS AND DISCUSS

The numerical simulation results will be presented in terms of the
normalized bistatic cross section. For a scattered wave in α polarization
and an incident wave in β polarization

σs
αβ(θs, φs) =

4π|Ēs
α|2

2ηPi
(19)
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where α = V or H, β = V and the observation direction is k̂s =
sin θs cosφsx̂ + sin θs sinφsŷ + cos θsẑ, the incident wave power is

Pi =
2π2

η

∫
kρ<k

dkxdky

(
|EV |2

) kz

k
(20)

So σαβ are, respectively

σs
HV =

ηik

4π

∫
S′

dx′dy′e−ikr′ ·
[
−Ix′(x′, y′, z′) sinφs + Iy′(x′, y′, z′) cosφs

]
(21)

and

σs
V V =

ηik

4π

∫
S′

dx′dy′e−ikr′ · [Ix′(x′, y′, z′) cos θs cosφs + Iy′(x′, y′, z′)

cos θs sinφs−(fx′(x′, y′, z′)Ix′(x′, y′, z′)+fy′(x′, y′, z′)Iy′(x′, y′, z′)) sin θs]
(22)

where r′ = x′ sin θs cosφs + y′ sin θs sinφs + f(x′, y′) cos θs

Simulations are based on Gaussian random rough surfaces with
Gaussian correlation functions.

Energy conservation check is essential. For a conducting rough
surface, the reflectivity should be unity, which can be calculated in
term of the surface fields.

r(θi) =
Ps

Pi
=

∫
S′

dsn̂ · 1
2
Re

[
Ēs × H̄s

]
Pi

(23)

where Ēs and H̄s are the surface scattered fields.They are calculated
as Ēs = −n̂×Ēi and H̄s = J̄−n̂×H̄i. The surface fields are calculated
for each realization, and we can calculate reflectivity using Eq. (23).
Then, we check whether r(θi) is equal to unity. In this paper, results
of r(θi) is provided for the simulations.

3.1. Comparison between the UV and SVD

To show the validity of UV method, one realization for a conducting
rough surface is used, whose parameters are given as: the rms height
and correlation length of the rough surface are 0.05λ and 1.414λ,
respectively. The surface lengths are 8 by 8 wavelengths and the
incidence angle is 30 degrees. Both SVD and UV methods are utilized
to calculate the bistatic scattering coefficient from the realization.
Fig. 4 and Fig. 5 give the comparison bistatic scattering coefficients
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Figure 4. Comparison scattering coefficient σV V between SVD and
UV methods.

Figure 5. Comparison scattering coefficient σHV between SVD and
UV methods.
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σV V and σHV between SVD and UV methods and show the two curves
are superposition. On the other hand, the energy conservation of the
3-D conducting rough surface is calculated through integral scattering
coefficient over half above space, the reflectivity of the two method
seem equal to each other (1.0002(UV), 1.0003(SVD)).

3.2. Analysis Distribution of the Induced Current

Figs. 6, 7 and 8 show the 3-D distribution of the induced current Ix,
Iy and Iz. From the three figures, we can see that induced current
Ix, Iy or Iz show the characteristic of tapered incident wave, the small
amplitude of currents are around the edge of the conducting rough
surface (δ = 0.10λ,  = 1.414λ) illuminated with tapered incident
wave.

Figure 6. 3-D distribution of absolute value of induced current Ix.

3.3. Discuss of the Bistatic Scattering Coefficients Averaged
over 30 Realizations.

In Fig. 9 and Fig. 10, we simulated the bistatic scattering coefficients
σV V and σHV averaged over 30 realizations through the UV method.
The rms height are 0.03λ, 0.05λ and 0.10λ, respectively, and all of
their correlation length are 1.414λ. The surface lengths are 8 by
8 wavelengths and the incidence angle is 30 degrees. For VV case,
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Figure 7. 3-D distribution of absolute value of induced current Iy.

Figure 8. 3-D distribution of absolute value of induced current Iz.

the Fig. 9 shows that the the backscattering coefficient will increase
with rms height increasing, on the contrary, the specular scattering
coefficient will decrease, which opposites to the rms height’s increasing.
Meanwhile, for HV case, the Fig. 10 shows that the the backscattering
coefficient will also increase with rms height increasing, so does the
specular scattering coefficient, which opposites to the VV case.
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Figure 9. The bistatic scattering coefficients σV V averaged over 30
realizations.

Figure 10. The bistatic scattering coefficients σHV averaged over 30
realizations.
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4. CONCLUSION

In this paper, the UV-MLP method can be used for rapid solution of
vector electromagnetic wave scattering from 3D PEC rough surface
scattering. The method can be applied to 3D PEC rough surface
scattering, and volume scattering of moderate size particles using
high-order spherical wave Green’s functions. Presently the case of
vector electromagnetic wave scattering by lossy dielectric random
rough surfaces are being studied.
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