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Abstract—The characteristics of the guided electromagnetic wave
propagation through a slab waveguide of uniaxially anisotropic
dispersive metamaterial are investigated. Taking the cold plasma
media model with ωmpz < ωmp⊥ < ωep⊥ as an example, the mode
classification established in terms of the operating angular frequency
ω0 of the slab waveguide. The results indicate that the mode properties
are closely dependent on the frequency. When ω2

mpz < ω2
0 < ω2

mp⊥
there are infinite guided modes. It is also found that when ω2

em < ω2
0 <

ω2
mpz, there may be multiple solutions of the propagating mode with

imaginary transverse wave number in a slab waveguide with thickness
less than a certain value.

1. INTRODUCTION

Materials with negative effective permittivity (ε) and permeability
(µ) in a certain band of frequency, referred to as metamaterial,
double negative material, left-handed material (LHM), and so on, have
received much attention [1–7]. The first double negative medium was
proposed when periodic arrays of split ring resonators (SRRs) and wire
strips were combined and the phenomenon of the negative refraction
was experimentally verified [4]. One of the most important applications
of such a material is to make a perfect lens [5]. The amplification of
the evanescent waves to achieve sub-wavelength imaging is related to
the guided modes in the slab waveguide. Thereafter, the propagating
modes with both real and imaginary transverse wave numbers in the
isotropic LHM slab have been investigated extensively [8–14].

However, the LHM that has been made are actually anisotropic,
and it may be difficult to prepare an isotropic LHM. It has been



468 Liu et al.

shown theoretically that under some conditions the amplitude of
the evanescent wave would be amplified exponentially when it is
transmitted through a slab of uniaxially anisotropic metamaterial [15].
Thus, the analysis of guided modes in an anisotropic slab waveguide
that exhibits the negative refractive index is also of great interest and
importance. Recently, Lindell and Ilvonen studied the guided waves
on a slab of uniaxial backward-wave medium [16]. Cheng and Cui
discussed the guidance conditions for both bulk and surface modes
in different waveguide structures of biaxially anisotropic metamaterial
under the excitation of a line source [17, 18]. Nevertheless, such an
anisotropic LHM must be dispersive [1]. The effect of dispersion on
mode properties is complicated and has useful applications in several
respects.

In this paper, we discuss the guided modes in a slab waveguide
of uniaxially anisotropic dispersive metamaterial. We show that the
mode properties are closely dependent on the operating frequency ω0

of the slab waveguide. Furthermore, the mode cutoffs are analyzed
under the assumption that the ratio of slab thickness d to free-space
wavelength λ0, defined as the normalized frequency in [19], is only
determined by the slab thickness d.

2. DERIVATION OF THE GUIDANCE CONDITIONS

Consider a slab waveguide with thickness d = d2 − d1 in free space as
shown in Fig. 1.

Region 1 is filled with uniaxially anisotropic dispersive media with

Figure 1. Geometry of an anisotropic dispersive metamaterial slab
with thickness d = d2 − d1.
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the permittivity and permeability tensors as follows:

ε1 =

[
ε⊥(ω)

ε⊥(ω)
εz(ω)

]
, µ1 =

[
µ⊥(ω)

µ⊥(ω)
µz(ω)

]
(1)

Besides, part or all of the components in the ε1 and µ1 tensors are
negative. Under the time-harmonic excitation with e−jωt, for guided
transverse electric (TE) waves, the electric field vectors in the three
regions can be written as

	E0 = ŷE−
0 eα0zzejkxx (2)

	E1 = ŷ
(
E+

1 ejk1zz + E−
1 e−jk1zz

)
ejkxx (3)

	E2 = ŷE+
2 e−α0zzejkxx (4)

The magnetic field vectors in source-free regions are governed by
Faraday’s law, which gives

	H0 =
1

jωµ0
(ẑjkx − x̂α0z)E−

0 eα0zzejkxx (5)

	H1 =
1
ω

(
ẑ
kx

µz
− x̂

k1z

µ⊥

)
E+

1 ejk1zzejkxx

+
1
ω

(
ẑ
kx

µz
+ x̂

k1z

µ⊥

)
E−

1 e−jk1zzejkxx (6)

	H2 =
1

jωµ0
(ẑjkx + x̂α0z)E+

2 e−α0zzejkxx (7)

where kx is the wave vector component in the x̂ direction, k1z is
the transverse wave number in region 1, which can either be real or
imaginary. In order to restrict the waves to propagate within the slab,
α0z should be positive real. The dispersion relations in regions 0 and
1 are separately

(kxd)2 − (α0zd)2 = (k0d)2 (8)

(kxd)2 +
µz

µ⊥
(k1zd)2 =

ε⊥µz

ε0µ0
(k0d)2 (9)

where k0 is the free-space wave number. Eliminating (kxd)2 from the
Eqs. (8) and (9), we obtain

(α0zd)2 +
µz

µ⊥
(k1zd)2 =

(
ε⊥µz

ε0µ0
− 1

)
(k0d)2 (10)



470 Liu et al.

It is seen that the curve shape that Eq. (10) represents is related to both
the sign and the value of the tensor components, which are dependent
on the operating angular frequency ω0 of the anisotropic dispersive
metamaterial. Plus, provided that d/λ0 remains constant, Eq. (10) is
independent on the frequency [20].

Matching the boundary conditions at z = d1 and z = d2, we
obtain the guidance conditions for even and odd bulk modes with real
transverse wave number k1z as follows:

α0zd =
µ0

µ⊥
(k1zd) tan

(
k1zd

2

)
(11)

α0zd = − µ0

µ⊥
(k1zd) cot

(
k1zd

2

)
(12)

If the transverse wave number inside a slab of anisotropic media is
imaginary (k1z = jα1z, α1z is positive real), the guidance conditions
for even and odd surface modes are separately

α0zd = − µ0

µ⊥
(α1zd) tanh

(
α1zd

2

)
(13)

α0zd = − µ0

µ⊥
(α1zd) coth

(
α1zd

2

)
(14)

The relation between α0zd and α1zd is given by

(α0zd)2 − µz

µ⊥
(α1zd)2 =

(
ε⊥µz

ε0µ0
− 1

)
(k0d)2 (15)

3. RESULTS AND DISCUSSION

A graphical approach is useful in determining the even mode solutions
for guided TE waves, whose properties are only related to µz, µ⊥ and
ε⊥. For the convenience, we consider the cold plasma media model and
the losses are assumed negligible. The three component parameters in
Eq. (1) have the following form [5, 21, 22]:

ε⊥(ω) = ε0

(
1 − ω2

ep⊥/ω2
)

(16a)

µ⊥(ω) = µ0

(
1 − ω2

mp⊥/ω2
)

(16b)

µz(ω) = µ0

(
1 − ω2

mpz/ω2
)

(16c)

Here, ωep and ωmp are electric and magnetic plasma frequencies. Since
the metamaterial is uniaxially anisotropic, we have ωmp⊥ �= ωmpz.
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Without loss of generality, let the parameters satisfy the following
relation:

ωmpz < ωmp⊥ < ωep⊥ (17)

In this paper, we choose ωep⊥/2π = 2
√

3 GHz, ωmp⊥/2π =
√

6 GHz,
ωmpz/2π = 2 GHz and meanwhile define t1 = ε⊥µz/ε0µ0 − 1, t2 =
µz/µ⊥ for simplicity in later analysis. Different combinations of their
signs will affect the mode properties greatly. In unixially anisotropic
dispersive media, the signs are determined by the operating angular
frequency of the slab waveguide. In terms of the ranges of ω0, they are
classified into the following three cases. The odd mode properties can
be obtained similarly and will not be analyzed in this section.

Case I: ω2
mpz < ω2

0 < ω2
mp⊥. In such a case, t1 < 0, t2 < 0 can be

readily obtained. The curves that Eq. (10) stands for are hyperbola
lines with the real axis x. The values of α0zd and k1zd given by the
intersections of the hyperbola lines with intercept (k0d)

√
t1/t2 and

tanlike lines derived from Eq. (11) are the solutions of guided modes,
which represent the possible propagating TE even modes, as shown in
Fig. 2(a). Here, we assume that the intercepts are only determined by
the slab thickness d, since the anisotropic metamaterial is dispersive.
The corresponding kxd can be determined in turn from either Eq. (8) or
Eq. (9). The calculated values of propagation constant kx normalized
by k0 are seen in Fig. 2(b) as a function of the normalized frequency
d/λ0 where λ0 is a free-space wavelength. The lowest even mode is the
TE2 mode. At any fixed normalized frequency point d/λ0 there are

     
 (a)  (b)

Figure 2. Even bulk modes determined by Eqs. (10) and (11) when
ω0/2π =

√
5 GHz, (a) Curves of α0zd versus k1zd, (b) Curves of kx/k0

versus d/λ0.
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infinite values of kx. That is, we will have infinite propagation modes
in the slab waveguide, which is obviously different from the case that
only finite modes can propagate simultaneously in the conventional
slab waveguide. Besides, high-normalized frequency cutoffs exist for
all the even modes. For imaginary transverse wave numbers, there are
no values of α0zd and α1zd satisfying Eq. (15). The curves describing
the dispersion relation do not exist. Thus, the propagating mode with
the imaginary transverse wave number does not exist.

Case II: ω2
0 < ω2

em, where ω2
em = ω2

mpz · [ω2
ep⊥/(ω2

ep⊥ + ω2
mpz)].

In this case, t1 > 0, t2 > 0. Eq. (10) becomes ellipse lines. The
curves of α0zd versus k1zd given are shown in Fig. 3(a). All the
even modes exhibit a similar behavior of low-normalized frequency
cutoffs. The graphs of kx/k0 as a function of d/λ0 can further be
obtained, as shown in Fig. 3(b). From the dispersion relation described
by Eq. (9) we know that the normalized propagation constant kx/k0

approaches
√

ε⊥µz/ε0µ0 as the normalized frequency d/λ0increases.
For imaginary transverse wave numbers, substituting Eq. (13) in
Eq. (15) and defining F = t1 · (k0d)2 we find

F =
[
(µ2

0/µ⊥µz) tanh2(α1zd/2) − 1
]
· t2 · (α1zd)2 (18)

The sign of F is determined only by t1. This equation describes a
family of curves for different values of µ2

0/µ⊥µz, which means ω2
0 varies

from 0 to ω2
em. The F versus α1zd diagram is plotted in Fig. 4(a).

It’s seen that in the region where F > 0, which corresponds to the
anisotropic slab with the component parameters satisfying t1 > 0,

   
(a)                                                                                   (b)

Figure 3. Even bulk modes determined by Eqs. (10) and (11) when
ω0/2π =

√
2 GHz, (a) Curves of α0zd versus k1zd, (b) Curves of kx/k0

versus d/λ0.
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the values of α1zd characterize the propagating mode with imaginary
transverse wave number. The mode properties are related to the values
of the component parameters. Thus for ω2

z⊥ < ω2
0 < ω2

em, where
ω2

z⊥ = ω2
mpz · [ω2

mp⊥/(ω2
mp⊥ + ω2

mpz)], we have µ2
0/µ⊥µz > 1. The

propagating mode with the imaginary transverse wave number exists
and has no cutoff. For ω2

0 ≤ ω2
z⊥, we have µ2

0/µ⊥µz ≤ 1. The guided
mode does not exist in this case.

Case III: ω2
em < ω2

0 < ω2
mpz or ω2

0 > ω2
mp⊥. In such a case,

t1 < 0, t2 > 0. The values of α0zdand k1zdsatisfying Eq. (10) do
not exist. That is, the guided modes do not exist. For imaginary
transverse wave numbers, when ω2

em < ω2
0 < ω2

mpz, µ2
0/µ⊥µz > 1 and

µ⊥ < 0are obtained. Fig. 4(b) shows that in the region where F < 0,
there are multiple values of α1zd. The propagating mode has the high-
normalized frequency cutoff. On the other hand, when ω2

0 > ω2
mp⊥,

we have µ⊥ > 0. The solutions of the guided modes obtained are not
coincident with the practical physical performance, so they should be
excluded.

    
                  (a)                                                                                      (b)

Figure 4. Even surface modes for different values of µ2
0/µ⊥µz

determined by Eq. (18) in terms of F versus α1zd, (a) ω0/2π <
√

3 GHz,
(b)

√
3 GHz < ω0/2π < 2 GHz.

4. CONCLUSION

In conclusion, we have discussed the effect of the operating angular
frequency ω0 and the slab thickness d on the mode properties in
detail. When the assumption of the relation in cold plasma media
model ωmpz < ωmp⊥ < ωep⊥ changes, the mode properties can also
be obtained by using the analysis method in the present study. The
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investigation will be helpful for the choice of the operating frequency
and the thickness of the metamaterial slab waveguide in practical
application.
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