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Abstract—A direct sub-domain moment-method formulation is
presented for the analysis of arrays of thin-wire loops. Curved piecewise
sinusoidal basis functions are used for the description of the currents
on the loops, while both point matching and reaction matching are
examined as testing schemes. Numerical results are provided for
representative array structures with the intention to delve into the
behavior of the solutions as the number of basis/testing functions
grows, but also for the purpose of comparison with well-documented
results. Finally, the complexity of the developed codes is estimated and
general guidelines are provided for the efficient and accurate analysis
of multi-element arrays.

1. INTRODUCTION

Traditionally, isolated thin-wire loop antennas have been analyzed
with the aid of Fourier expansions. In this approach, the unknown
current on the loop, the kernel of the associated integral equation
and the driving field are expressed as Fourier series, the coefficients of
which can be readily interrelated. The resulting current coefficients are
available in closed form for different excitation types; for example, see
[1–5] and certain works cited therein. The suitability of Fourier series
for the description of the currents on thin-wire loops has led to the
generalization of their use to coupled loops and arrays of loop elements
[6–10]. Nevertheless, the applicability of this approach is practically
restricted to specific array configurations, while the computation of
the resulting expansion coefficients via numerical integration becomes
increasingly problematic as the loop circumference is increased, as an
outcome of the fact that more and more terms are required to obtain
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fairly stable results. As an alternative, one can utilize moment methods
[11], which have been developed in several variants for treating curved
thin-wire structures (see, for example, [12, 13]).

Moment methods may be applied to thin-wire loops using either
entire-domain or sub-domain basis and testing functions. Entire-
domain schemes are available for both isolated loops [14] and arrays
of arbitrarily oriented loops [15]. However, entire-domain schemes are
applicable under restrictions upon the size of the loop, mainly due
to certain difficulties encountered when attempting to calculate the
associated integrals for large mode numbers. On the other hand, sub-
domain schemes are relatively easy to implement, even for quite large
loops [16–18].

The present article is an outgrowth of the work presented in [18].
More specifically, the sub-domain moment-method formulation of [18]
is extended to cope with arrays of arbitrarily large loops. As in [18],
both a simple collocation scheme and Galerkin’s method are adopted
as testing procedures. The two variants of the proposed method are
examined from different aspects, with special emphasis placed on the
behavior of the resulting solutions as the number of basis/testing
functions grows. For the assessment of the computational complexity
of the developed codes, cost functions are estimated in the form of
simple polynomial expressions, which are further utilized to obtain
rough quantitative criteria for the efficient utilization of these codes.

For the purpose of comparison with well-documented results [6],
numerical results are presented for a pair of parallel identical loops.
Results are also presented for multi-element arrays of parallel loops, in
order to verify the findings of the complexity analysis and demonstrate
the important savings in execution times that can be achieved by
applying Galerkin’s method for relatively small numbers of unknowns.

2. MOMENT-METHOD FORMULATION FOR ARRAYS
OF THIN-WIRE LOOPS

Consider an array of L thin-wire loops, each of which may be either
active (that is, directly driven by a generator) or parasitic. The radius
of each loop and the corresponding wire radius are denoted by bp

and ap, respectively. The respective loop center is at (xp, yp, zp) in
rectangular coordinates. The subscript p = 1, 2, . . . , L is used to
distinguish among the quantities pertaining to each element of the
array. The loops are thin in the sense that ap � bp and ap � λ, where λ
is the operating wavelength; hence, the unknown currents on the loops
can be assumed to flow predominantly in the respective longitudinal
directions. Frill sources of equivalent voltages Vp are assumed for the
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excitation of the active array elements; nevertheless, the analysis that
follows can be easily adapted to other excitation models.

Since the main scope of the present study is the examination of
the proposed numerical schemes from different aspects, including that
of computational accuracy and complexity, it is rather convenient to
focus on arrays of loops that are parallel to each other. For this, the
array elements are all lying in parallel planes specified by z = zp.
The generalization of the proposed formulation to arrays of arbitrarily
oriented loops requires rather formidable algebraic manipulations [15]
and is beyond the scope of this article.

The unknown longitudinal current on each element of the array
is approximated by a weighted superposition of 2Np sub-domain basis
functions and can be expressed as a function of the local azimuth angle
ξ around the respective periphery, as follows

Ip(ξ) =
2Np∑
n=1

w(p,n)f(p,n)(ξ), (1)

where w(p,n) are unknown weights. The basis functions f(p,n)(ξ) are
selected to be piecewise sinusoids of curvature radius bp and angular
width 2δp = 2π/Np, which are centered at (n−1)δp and can be written
as

f(p,n)(ξ) =

{
sin{k0bp[δp − |ξ − (n− 1)δp|]}, |ξ − (n− 1)δp| ≤ δp

0, |ξ − (n− 1)δp| > δp

n = 1, 2, . . . , 2Np, (2)

where k0 = 2π/λ. The subscript pair (p, n) is introduced to distinguish
among quantities pertaining to the basis functions of (2). For example,
the vector �E(p,n) that appears below stands for the electric field
radiated by the current of (2).

Instead of determining coupled integral equations for the unknown
currents on the array elements, the boundary condition of the
tangential electric field around the periphery of each element is
enforced in a direct manner, as in [18]. This is accomplished by simply
equating the tangential component of the total electric field radiated
by the filamentary currents of (1) to the negative of the corresponding
component of the excitation field on each element. For reasons
explained in [18], the contribution of the self-excited electric field to
the tangential electric field on each loop is evaluated along a testing
ring defined by the upper (or lower) points of the associated wire.
On the other hand, as long as sufficiently thin loops are considered,
mutual-coupling effects are taken into account in an average sense;
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in particular, by computing the tangential electric field generated by
the distant basis functions along the wire axis. Hence, the boundary
conditions on the array elements can be written as

2Nq∑
n=1

w(q,n)

[
t̂q · �E(q,n)(xq + bq cos ξ, yq + bq sin ξ, zq + aq)

]

+
L∑

p=1
p�=q

2Np∑
n=1

w(p,n)

[
t̂q · �E(p,n)(xq + bq cos ξ, yq + bq sin ξ, zq)

]

= −t̂q · �Eexc
q (xq + bq cos ξ, yq + bq sin ξ, zq + aq), q = 1, 2, . . . , L, (3)

where ξ is the local azimuth angle as measured around the testing ring
along which the boundary condition is enforced and t̂q = −x̂ sin ξ +
ŷ cos ξ is the associated tangential unit vector. The excitation fields
of the active elements are denoted by �Eexc

q in (3). Parasitic elements
are simply modeled as active elements driven by null fields. Explicit
expressions for the electric fields of the basis functions can be derived
by properly shifting the near-field components given in the Appendix
of [18].

Next, the boundary conditions of (3) are utilized in two different
ways, in order to form systems of linear equations for the unknown
coefficients w(p,n). A simple way to proceed is to apply a simple point-
matching (PM) procedure, according to which (3) is enforced at a mesh
of discrete points, which is accomplished by setting ξ → (m− 1)δq for
m = 1, 2, . . . , 2Nq. Alternatively, one can apply Galerkin’s method
and enforce (3) in a reaction-matching (RM) fashion; this essentially
consists in multiplying both sides of (3) by the testing functions
f(q,m)(ξ) and integrating over the intervals spanned by these functions.
In this latter case, the resulting simultaneous equations may be written
as

L∑
p=1

2Np∑
n=1

Z(p,n),(q,m)w(p,n) = −V(q,m), q = 1, 2, . . . , L, m = 1, 2, . . . , 2Nq.

(4)
The reaction integrals Z(p,n),(q,m) and the excitation terms V(q,m) are
given by

Z(p,n),(q,m) = −
∫ mδq

(m−2)δq

S(p,n),q(ξ)f(q,m)(ξ)bdξ, (5)

V(q,m) = −
∫ mδq

(m−2)δq

Sexc
q (ξ)f(q,m)(ξ)bdξ, (6)
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where S(p,n),q(ξ) and Sexc
q (ξ) are the following inner products

S(p,n),q(ξ) =

{
t̂q · �E(p,n)(xq+bq cos ξ, yq+bq sin ξ, zq+aq), p = q

t̂q · �E(p,n)(xq+bq cos ξ, yq+bq sin ξ, zq), p 	= q
, (7)

Sexc
q (ξ) = t̂q · �Eexc

q (xq + bq cos ξ, yq + bq sin ξ, zq + aq). (8)

Rigorous expressions for the excitation field of the frill generator
are available in [5]. To simplify the relevant computations, the
approximations suggested and exploited in [17] are utilized, which yield

Sexc
q (ξ) ≈ − Vq cos ξ

ln

(
cq

aq

)



exp


−jk0

√
c2
q + 4b2

q sin2 ξ

2




√
c2
q + 4b2

q sin2 ξ

2

−
exp


−jk0

√
a2

q + 4b2
q sin2 ξ

2




√
a2

q + 4b2
q sin2 ξ

2




(9)

where cq/aq is the ratio of the outer to the inner radius of the
equivalent frill current. The above formulation can be readily adapted
to other excitation models; for the rather popular delta-gap source, the
resulting expressions can be found in [18]. When combined with non-
singular kernels, this latter feeding model yields nonphysical currents
whose imaginary part oscillates rapidly near the driving point [18].
Because of this fact, the delta-gap excitation is not considered further
herein.

As can be readily deduced, the computation of the reaction
integrals Z(p,n),(q,m) is quite cumbersome. Important savings in the
computation of the self-reaction integrals (occurring for p = q) can
be achieved by utilizing the symmetry properties of each element,
yielding Z(p,n),(p,m) = Z(p,1),(p,|n−m|+1). Furthermore, when any two
loops are more distant than a few wire radii, which is the case usually
encountered in practice, the associated reaction integrals Z(p,n),(q,m)
between segments belonging to different loops can be readily computed
using elementary quadrature techniques, like the two-term midpoint
rule

Z(p,n),(q,m) ≈ −bδq

[
S(p,n),q(mδq − 1.5δq)f(q,m)(mδq − 1.5δq)
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+ S(p,n),q(mδq − 0.5δq)f(q,m)(mδq − 0.5δq)
]

(10)

Similar formulas can be also used for the computation of the integrals
V(q,m) that correspond to integration intervals quite far from the
feeding points and the reaction integrals Z(p,n),(p,m) between sufficiently
distant segments belonging to the same loop. The midpoint formula
for V(q,m) can be written as

V(q,m) ≈ −bδq

[
Sexc

q (mδq − 1.5δq)f(q,m)(mδq − 1.5δq)

+ Sexc
q (mδq − 0.5δq)f(q,m)(mδq − 0.5δq)

]
(11)

Several tests have shown that the efficient midpoint formulas (10) and
(11) can be used for the computation of interactions that are more
distant than a properly selected threshold, without any perceivable
loss of accuracy. In most cases, a distance threshold level at 25aq was
found to be a good choice.

3. VALIDATION RESULTS

Certain tests have been conducted for the verification of the numerical
schemes presented in this article. Much care was taken to ensure the
accuracy of the computations, especially in view of the rapidly growing
condition numbers that typically accompany thin-wire moment-
method formulations with non-singular kernels. For this, quadrature
rules of varying order and different system solvers were implemented.

As a first example, the case of two parallel identical loops is
examined. In what follows, the distance between their centers is
denoted by d. Numerical results for the self- (Y1,1 = G1,1 + jB1,1) and
mutual (Y1,2 = G1,2 + jB1,2) admittance as N (where N1 = N2 = N)
grows are presented in Figs. 1 and 2, respectively, for k0b = 1, Ω =
2 ln(2πb/a) = 10, c/a = 2.3 and k0d = 2. The solid lines in Figs. 1
and 2 show independent results taken from [6]. Apparently, when N
is sufficiently large, the agreement between the results of the proposed
schemes and the reference ones is excellent. The PM and RM points
become graphically indistinguishable as N increases up to 75 (note that
πb/a ≈ 74.23 in this example), just as expected according to [18]. On
the contrary, glaring differences between the PM and RM results are
seen for small N . Obviously, the RM results are remarkably stable over
the whole range of N (even for N as small as 5), while the PM results
exhibit a strong dependence upon N , especially when N is moderately
small; note that certain points of the PM data set are out of scale in
Figs. 1 and 2. This behavior is representative over a wide range of loop
lengths and radii, at least for sufficiently thin wires.
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Figure 1. Computed results for the self-admittance of two parallel
identical loops as N grows, for k0b = 1, Ω = 2 ln(2πb/a) = 10, c/a =
2.3 and k0d = 2.

Figure 2. Computed results for the mutual admittance of two parallel
identical loops as N grows, for k0b = 1, Ω = 2 ln(2πb/a) = 10, c/a =
2.3 and k0d = 2.
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To further investigate the behavior of the solutions, selected
results are presented in Figs. 3 (PM) and 4 (RM) for the self- and
mutual admittances as functions of d/λ. The plotted results are for
k0b = 1, Ω = 2 ln(2πb/a) = 10 and c/a = 2.3. Numerous runs have
been performed for different discretization levels, ranging from high
(N roughly equal to or larger than πb/a) to low (N much smaller than
πb/a), in order to verify the findings of the previous paragraph; for
brevity, results for N = 75 and N = 25 are shown in Figs. 3 and 4.
Just as expected from the preceding, the RM curves in Fig. 4 are in
very close agreement to each other, while significant discrepancies exist
between the PM curves in Fig. 3.

Several other configurations were examined, in order to look into
the capabilities of the proposed schemes for analyzing multi-element
arrays. Among others, many of the Yagi arrays tabulated in [19]
were analyzed and certain of the characteristics reported therein were
adequately reproduced (within about 1%).

4. COMPUTATIONAL COST ESTIMATION

As pointed out in [18], the simplicity of the PM scheme cannot
guarantee its unconditional superiority over the RM one in terms of
typical efficiency measures, since the latter yields stable solutions for
notably smaller numbers of unknowns. This feature of the RM scheme
is particularly useful when one is interested in analyzing large-scale
arrays or in performing repeated simulations as part of an optimization
process. The purpose of this section is to provide cost functions for the
developed codes, mainly in order to carry out complexity comparisons
on a systematic basis (in the sense discussed in [20]) and examine the
potential savings that may be achieved by applying the RM scheme
for relatively small numbers of basis functions per element.

As can be easily deduced, the application of sub-domain moment
methods to multi-element arrays of loops leads to large interaction
matrices that are not symmetric Toeplitz ones, even when the loops
are parallel to each other and arranged in a row. As an outcome,
by contrast with what is true for single loops, fast solvers intended
for Toeplitz matrices are not applicable and the associated linear
systems must be solved via general-purpose algorithms. To simplify
the analysis that follows, only arrays of coaxial loops are considered,
which have been used in a multitude of practical applications. The
general case of L driven loops is assumed, in order to take into account
the maximum number of complex operations that may be required for
the computation of nonzero excitation terms V(q,m).

For a G-point Gauss-Legendre quadrature routine and a complex
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Figure 3. Plot of the self- and mutual admittances of two parallel
identical loops as functions of d/λ, as derived by the PM scheme,
for k0b = 1, Ω = 2 ln(2πb/a) = 10 and c/a = 2.3. High and low
discretization levels correspond to N = 75 and N = 25, respectively.

Figure 4. Plot of the self- and mutual admittances of two parallel
identical loops as functions of d/λ, as derived by the RM scheme,
for k0b = 1, Ω = 2 ln(2πb/a) = 10 and c/a = 2.3. High and low
discretization levels correspond to N = 75 and N = 25, respectively.
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version of the LU solver provided in [21], the number of operations
required by the PM code is roughly approximated as

CPM ≈

 L∑

p=1

2Np


 (50G + 20)+





 L∑

p=1

2Np




2

−
L∑

p=1

(2Np)2


(50G+7)

+

2


 L∑

p=1

2Np




3

+ 15


 L∑

p=1

2Np




2

+ 13


 L∑

p=1

2Np




3
. (12)

As for the RM code, it is quite difficult to derive a closed-form
expression for the number of operations required for filling the
interaction matrix and the excitation vector using (10) and (11) on
the basis of any threshold criterion. Nevertheless, it is quite easy to
estimate an upper bound for the cost function of the RM code by
assuming that (10) is utilized only for p 	= q and (11) is not used at
all. This expression for the cost function is

CRM ≈

 L∑

p=1

2Np


 (100G2 + 50G + 3)

+





 L∑

p=1

2Np




2

−
L∑

p=1

(2Np)2


(100G+17)

+

2


 L∑

p=1

2Np




3

+ 15


 L∑

p=1

2Np




2

+ 13


 L∑

p=1

2Np




3
. (13)

In the special case of identical elements (namely, when bp = b and
ap = a), N1 = N2 = · · · = NL and the above formulas are reduced to

CPM ≈ L(50G + 20)(2NPM) + L(L− 1)(50G + 7)(2NPM)2

+
2L3(2NPM)3 + 15L2(2NPM)2 + 13L(2NPM)

3
, (14)

CRM ≈ L(100G2 + 50G + 3)(2NRM) + L(L− 1)(100G + 17)(2NRM)2

+
2L3(2NRM)3 + 15L2(2NRM)2 + 13L(2NRM)

3
. (15)

As in [18], these expressions can be utilized in many ways; for example,
one can set NRM = κNPM (with NPM ∼ πb/a) and proceed to
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determine the range of κ for which the RM scheme should be preferred
to the PM one. Alternatively, one can choose a fairly small κ (for
example, κ = 0.25) and proceed to obtain which NPM (or πb/a) satisfy
the inequality CPM − CRM ≥ 0. For this, the roots of the equation
CPM − CRM = 0 are obtained, which are expressed as

2N± =
−P1 ±

√
P 2

1 − 4P0P2

2P2
, (16)

where P0 = L[−100G2κ − 50G(κ − 1) + (73 − 22κ)/3], P1 = L(L −
1)(50G + 7 − 100Gκ2 − 17κ2) + 5(1 − κ2)L2 and P2 = 2(1 − κ3)L3/3.
For κ < 1, P2 is always positive, but the signs of P0 and P1 depend on
G and κ. It can be easily shown that P0 is negative when

G >
1 − κ

4κ
+

√
75 + 142κ− 13κ2

20
√

3κ
. (17)

Within the interval of interest 0.1 ≤ κ < 1, (17) holds for G ≥ 5;
under this latter condition, the roots given by (16) are real numbers
with N− < 0 and N+ > 0. Under these circumstances, the inequality
CPM − CRM > 0 is satisfied for NPM > N+. On the other hand, when
P0 > 0 and P 2

1 > 4P0P2, the roots N± and P1 have opposite signs;
thus, when P1 > 0, the roots N± are both negative and the inequality
CPM − CRM > 0 is satisfied for all positive NPM. Nevertheless, this
latter case is of limited usefulness, as long as it occurs for quite small
G, which cannot guarantee the accuracy of the computations. Finally,
elementary investigation of the inequalities P0 > 0 and P1 < 0 has
revealed that they cannot hold simultaneously for any meaningful
combination of the parameters L,G and κ.

Several tests have confirmed the findings of the last paragraph.
As an indicative example, a coaxial array of four identical elements
with πb/a ≈ 110 (b/λ = 0.1572, a/λ = 0.004496) and c/a = 2.3 is
examined. Measured execution times, normalized to that required by
the PM code for N = 110 (or a total number of 2LN = 880 unknowns),
are depicted in Fig. 5 for G = 64. Even for this large G, as can be
readily inferred from (14) and (15), the inequality CRM < CPM is
satisfied for κ < 0.713. Obviously, this result agrees remarkably well
with what should be expected from Fig. 5. As a second example, a
Yagi array of loops is examined, which is taken from [19] and consists
of a reflector with k0b1 = 1.05, a frill-driven exciter with k0b2 = 1.1
and c2/a = 2.3, as well as L − 2 directors with k0bp = 0.9 (where
p = 3, 4, . . . , L). The wire radius of all elements is selected so that
Ω2 = 2 ln(2πb2/a) = 11 (or, equivalently, a/λ = 0.004496). As
in [19], the reflector is situated at z1 = −0.1λ, while the exciter
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Figure 5. Normalized execution times for a four-element array of
loops with πb/a ≈ 110 (b/λ = 0.1572, a/λ = 0.004496) and c/a = 2.3.

is at z2 = 0. The directors are located at zp = (p − 2)d, where
d = 0.2λ. Results for the measured execution times, normalized
to that required by the PM code for Np close to πbp/a (namely,
N1 = 117, N2 = 123 and N3 = · · · = NL = 101) are depicted in Fig. 6.
In this example, the RM runs were performed with N1 = 30, N2 = 31
and N3 = · · · = NL = 26. Results for the computed input admittance
are also provided in Table 1, together with the ones reported in [19]. As
can be seen from Fig. 6 and Table 1, the savings in the execution times
are greater than 85%, without significant accuracy loss (the differences
in the computed conductance and susceptance were found to be smaller
than 2%).

Table 1. Results for the input admittance of various Yagi arrays
consisting of a reflector with k0b1 = 1.05, a frill-driven exciter with
k0b2 = 1.1 and c2/a = 2.3, as well as L − 2 directors with k0bp = 0.9
(where p = 3, 4, . . . , L). The wire radius of all elements is a/λ =
0.004496, the reflector-exciter spacing is z2−z1 = 0.1λ and the directors
are spaced apart by d = 0.2λ.

Input Admittance (mS) 
L  PM (117, 123, 

101, …101) 
RM (30, 31, 26, 

… 26) 
Results from [19] 

4 1.616-j5.176 1.600-j5.103 1.60-j5.18 
6 1.550-j5.377 1.534-j5.299 1.56-j5.38 
8 1.538-j5.576 1.518-j5.494 1.54-j5.58 
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Figure 6. Normalized execution times for the arrays of Table 1.

5. SUMMARY AND CONCLUDING REMARKS

A direct sub-domain moment-method formulation was presented for
the analysis of arrays of thin-wire loops. Curved piecewise sinusoids
were assumed as basis functions, while both a simple collocation
technique and Galerkin’s method were applied for testing. Numerical
results were presented for regular arrays to verify the developed codes
and validate the results, but also to delve into the behavior of the
solutions as the number of basis functions grows.

Cost functions were derived for the developed codes, in order
to make complexity estimations and comparisons on a fair and
meaningful basis. From the complexity analysis and the numerical
results presented, general guidelines were extracted for the efficient
implementation of the proposed schemes.
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