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Abstract—In this study, we address the problem of detecting body-
worn improvised explosive devices (IEDs) from a safe distance using
radar. We have used a finite difference frequency domain (FDFD)
model to simulate the radar signature of a typical scenario for body-
worn IEDs, and have analyzed wrinkled clothing as a possible source of
clutter, as well as the possibility for uniform versus nonuniform array
spacing of explosive-filled metal pipes. Our analysis shows distinct
characteristics of the pipe backscattered farfield signal for uniformly
spaced pipes, with no significant clutter added when the metallic pipe
is covered with wrinkled clothing.

1. INTRODUCTION

While explosive devices have always been a formidable threat to
civilians as well as the military, the use of body-worn explosives
poses a greater threat than ever before. Ever shrinking in size, these
improvised explosive devices (IEDs) hide under the clothing of suicide
bombers. The very nature of their improvised creation with non-
standard parts makes it difficult to detect IEDs, especially in a timely
manner at a safe distance.

It is important to develop a sensor that can detect whether a
person is wearing such an explosive device at sufficient distance to
prevent him from entering populated or strategically important areas.

One possible sensor which can observe through clothing is radar.
High frequency radar beams above 20 GHz can be launched from
relatively small aperture antennas with sufficiently small beamwidths



286 Angell and Rappaport

to discriminate targets in azimuth at distances of up to 100 m. Radars
can be made inexpensively and are safe and easy to use.

One typical feature of body-worn IEDs is that they often tend to
have outer metallic shells, resembling pipes or tubes. The metal casing
increases the explosive’s damage potential by projecting high-velocity
shrapnel, but it also provides a detection characteristic. Circular metal
cylinders have strong radar cross sections, scattering incident RF plane
waves with characteristic patterns.

Additional clutter is added to the problem by other objects,
whether part of the explosives, or part of normal non-uniformity in
clothing. Analysis has been done for the effects not only of objects
added for increased damage with minimal effort, such as nails, but also
the effects of varied clothing surfaces on the suicide bomber detection
problem [1]. The analysis is extended with further examples in this
work.

Computational models have been used extensively for analyzing
the scattered field patterns around cylindrical objects [2–6]. By careful
computational modeling of the electromagnetic scattering of waves in
and around a modeled cylinder-based IED geometry, it is possible to
predict various features of the expected radar return signal.

2. THE FDFD COMPUTATIONAL METHOD

The nearfield scattering and farfield radiation pattern of an array of six
long metal tubes held in place against a flat layer of human tissue with
a thin layer of clothing, as shown in Figure 1 [7] is used as a typical
example. The scattering is computed for single frequency illumination

Figure 1. Body-worn IED.
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by a radar beam using the finite difference frequency domain (FDFD)
method. This computational model is similar to the finite element
method, but uses the simplified square grid geometry of FDTD [8, 9].
The basic equation used for two dimensional FDFD is the discretized
Helmholtz Equation (1).

Ez(i+1, j)+Ez(i, j+1)−4Ez(i, j)+Ez(i−1, j)+Ez(i, j − 1)
4∆

+k2 = 0,

(1)
with the standard discretization in terms of spatial step ∆:

Ez(x, y) = Ez(i∆, j∆) (2)

FDFD accounts for all multiple scattering effects from each type of
medium in the problem geometry: the six 4.4 cm diameter metal
cylinders, the polyester cloth holding them in place, and the flesh they
are bound to. The geometry is sampled at least as finely as ten points
per medium wavelength, capturing most of the fine-scale geometric
variations in the problem. The curved surfaces of the cylinders and
thin layer of clothing are readily modeled with FDFD. Although
it requires solving a system of simultaneous equations, the two-
dimensional FDFD method is computationally efficient, with run times
on desktop computers on the order of minutes. Three dimensional
FDFD is much more computationally intensive, requiring hours of
CPU time and GBytes of RAM. As such, 3D FDFD analysis is usually
reserved for specific geometries for which the scattering is dominated by
variation in all three dimensions. For the current scattering geometry
with long metal cylinders and a long, approximately flat human back,
much of the farfield scattering information will depend mostly on the
variation in the cross section, shown in Figure 2.

Figure 2. Cross sectional view, from above, of cylindrical explosives
on human tissue, held in place with a thin clothing layer.

The total grid size used for this geometry is 159 by 761 points,
including the absorbing boundary layer on each of the four sides. The
grid cell size is 0.4 mm, which corresponds to 30 points per wavelength
in air. Human flesh is modeled as typical high water content tissue,
with dielectric constant 27 and conductivity 30 S/m at 25 GHz [10];
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polyester clothing is chosen to have dielectric constant 2.8 and loss
tangent 0.001 [11]. To avoid reflections at the side of the computational
grid, absorbing boundary conditions (ABC) are applied to the exterior
grid termination. The ABC used in for this computation is Berenger’s
Perfectly Matched Layer (PML) [12], chosen to be eight cells deep, with
a parabolic conductivity profile. Because the ABC is applied only to
the grid termination, and not within the scattering region, the useful
scattering region is 143 by 745 cells.

If X is a column vector of stacked Ez values, the discretized
Helmholtz equation becomes AX = B, with A corresponding to
the association between electric field values in space. B is a vector
corresponding to excitation of the field with nonzero values only at
source positions. In this case, B characterizes the incident plane wave.
X is later reshaped to the corresponding geometry, within the 143 by
745 grid in this example.

In order to maintain at least 10 points per medium wavelength over
a large computational grid with radar illumination at high frequencies,
solving the discretized Helmholtz equation can become cumbersome,
requiring more computer RAM and CPU time.

For the geometry considered, there are many points in the
scattering region which are perfect electric conductors (PEC). For these
regions, the field is known to be of zero magnitude. Because the field
value is known in these regions, computational efficiency can be gained
by avoiding the calculation of field value within these regions.

The main difficulty in removing these calculations from the two
dimensional discretized Helmholtz equation is that the PEC, in this
case metal, must be removed from the banded tri-diagonal A matrix
without disrupting any information needed for the calculation of the
non-metal field values. Another difficulty is in the reconstruction of
the final grid with the known values inserted at the correct grid points
in the final reconstruction of the nearfield scattering profile.

Removing these calculations greatly decrease the computation
time and memory needed find the field values for the entire grid. This
enables solving larger problems with the same computational resources.
A. Computational Reduction Applied to Metal (CRAM) Algorithm

To reduce computation time and memory usage, areas of known
field value may be omitted during calculation and reintroduced when
reconstructing the nearfield radiation patterns. Because the field value
for metal objects is always equal to zero, this algorithm can be applied
to points within metal objects. A new method is presented below
which eliminates unnecessary calculations in metallic regions, speeding
up calculations and reducing memory requirements.

First, the cross sectional positions of interior metal points are



Progress In Electromagnetics Research, PIER 76, 2007 289

identified. Because of the construction of the finite difference equations
used to find the field value at any point within the computational grid,
the exterior metal points must be retained for calculating the nearby
nonmetal field values. The interior points are found by zero padding
around the outer edge of the entire geometry grid, and then generating
four shifted versions of the cross sectional geometry within this mask:
one shifted left, one right, one up, and one down, as shown in Figure 3.
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Figure 3. Diagram of method used to identify grid points within
a metal object. The original object is shown in gray (left), while
four white copies of this object, shown as patterned white objects, are
shifted across the grid (right). The right shifted object is highlighted to
illustrate this shift. The numbers in the cells indicate the multiplicity
of overlap of the metal cell index (2 for no overlap).

The original image is then multiplied by the four shifted versions,
and the interior metal points can be identified as having a value of
(metal index value)5. In this way, only the interior metal points are
identified, as it is necessary to retain the exterior metal points to
compute the scattering off the edge of the metal objects.

Once the indices of the interior metal points are identified, markers
are set at these points for subsequent removal of these indices from the
matrix equation for the entire grid space.

To remove the interior metal points from the matrix inversion
calculation, the corresponding column and row for each metal grid
point is removed from the A matrix, and the corresponding row is
removed from the column vector B.

Solving the matrix inversion problem A′X ′ = B′ for the new
reduced matrices yields the resulting nearfield values for all nonmetal
indices. After these values have been computed, the nearfield pattern
is reconstructed by using the cross sectional geometry file as a reference
for the reinsertion of the zero field values present in the center of metal
objects.
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Two example cases with different grid sizes are given to
demonstrate the computational savings afforded by the CRAM
algorithm.

For the 143 × 741 grid used in this study, the time required for
solving the matrix inversion problem was originally 98.3 seconds, with
the size of the A matrix equal to 120999×120999 bytes. CRAM reduces
this matrix size to 79884×79884, and the time to compute the solution
to the matrix equation to 13.12 seconds, corresponding to savings of
56% in memory and 87% in time.

For a much larger case, a grid size of 286 × 1491 was used. In
this case the A matrix is 426426 × 426426 bytes, and with no matrix
reduction, there is not enough memory in a computer with 1 GB of
RAM to compute the solution. With the use of the computational
reduction algorithm, the matrix is reduced to 287378 × 287378, and
inversion can be completed with a run time of 78.2 seconds.

3. RADAR ILLUMINATION

A microwave beam originating from a distant radar source illuminates
the geometry viewed from above as shown in Figure 2 as a plane wave,
normally incident from the top. The incident field can be decomposed
into vertical and horizontal polarizations. The vertical polarization
assumes the electric field Ez is perpendicular to the ground, and as
such also to the plane of the cross section of Figure 2. This field
arrangement, is usually denoted TM, as the magnetic fields are all in
the transverse plane of the cross section. For horizontal polarization,
the magnetic field Hz is vertical. It is referred to as TE. For the 2D
geometry, the entire field distribution is given by either Ez or Hz. This
study focuses on the vertical polarization case.

The most efficient procedure for computing scattering in the
presence of an infinite half space is to first calculate the specular
reflection and transmission of the plane wave on just the half space.
The complex Fresnel coefficients are readily available [13]. The incident
and reflected fields are used as the background fields in the region
above (outside) the flesh interface (shown as a black stripe), while
the transmitted field is used as the background inside the flesh.
These background fields are then used as excitations multiplying
the contrast of the non-air media perturbing the ideal half-space
geometry. The scattered fields in the presence of the half space obey
the inhomogeneous Helmholtz equation, with non-zero right hand side
at field locations in the regions occupied by the cylinders and clothing.
The total field is just the sum of the background field and the scattered
field.
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4. COMPUTATIONAL NEARFIELD SCATTERING

Figure 4 shows the normalized field distribution for the vertical, TM
polarized excitation. Here, the scattered and total electric fields Ez and
ET are shown. The greatest scattering occurs between the cylinders
rather than off their faces.

(a) 

(b)

Figure 4. Normalized values for: (a) scattered and (b) total electric
fields for the geometry of Figure 2, when illuminated by a normally
incident plane wave from above.

Another typical IED geometry was modeled to compare scattering
features. In this case, the outer surface of the vest is loaded with nails,
often used by suicide bombers as added metallic projectiles to increase
the potential damage inflicted. This geometry is given in Figure 5,
with nails indicated by small white circles.

Figure 5. IED cross section with nails adhered to the surface.

The scattered and total field computations for vertical polarization
for this geometry are given in Figure 6. The nails clearly have a large
effect on both the scattered and total fields. For the TM case, the nails
act to shield almost all field between them and the flesh.
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(a) 

(b) 

Figure 6. Normalized values for (a) scattered and (b) total electric
fields when nails are present as in Figure 5, when illuminated by a
normally incident plane wave from above.

The effects of wrinkled clothing have been analyzed by radar at
76 GHz [14], with results showing large variation in measured scattered
farfield from wrinkled clothing. This surprising result was reviewed,
and the situation modeled for a point of comparison using the FDFD
computational model as follows. Two clothing variations — one with
tight, small wrinkles and another with looser, larger wrinkles — were
added to determine their effects on the nearfield radiation pattern.
Each of these models of wrinkled clothing were applied to several cases

(a)

(b) 

Figure 7. Cross section of IED covered with (a) small wrinkles and
(b) large wrinkles.
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containing various combinations of human tissue, metal cylinders of
explosive materials, fabric enclosure for cylinders, and nails. Examples
of these cases are shown in Figure 7.

When wrinkles are present, there is a non-negligible level of clutter
added to the nearfield TM pattern, though of lower magnitude than the
nearfield pattern for the large metal cylinder and nail cross-sections.
Some examples of the total field from this feature are illustrated for the
case with six large cylinders and no nails (Figure 8). The scattering
effects of the wrinkles appear to increase with the increasing wrinkle
amplitude.

(a) 

(b) 

Figure 8. Differences between field magnitude in (a) small and no
wrinkles, and (b) large and no wrinkles.

5. FARFIELD PATTERNS OF BODY-WORN IEDS

Converting the computed nearfield scattering values to farfield patterns
is accomplished by integrating the electric and magnetic fields times
the 2-D Green’s function across the four bounding sides of the
computational grid, according to Huygens principle [15]. In effect,
the entire box is treated as a single scatterer. Next, the farfield
approximation is applied to group all distance variation into the single
factor e−jkr/r, with only angular variation remaining. For normally
incident plane waves, the resulting pattern represents the bistatic radar
cross section of the target.

Figure 9 shows the farfield patterns for a ±35 degree field of view
about the backscatter direction, comparing the scattered patterns of
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Figure 9. Comparison of scattered farfield radiation patterns for
metal cylinder vest, with and without nails.

the body model covered with just smooth clothing, the body model
with six metal cylinders (as shown in Figure 2), and the case with both
cylinders and 35 nails (Figure 5). Because human flesh is a high water
content medium, it scatters strongly at 25 GHz, with a planar reflection
coefficient of 0.72. Since the flesh region has a planar interface,
it generates strong scattering in the backscatter direction, 180 deg.
Despite the total reflection of the perfectly electrically conducting
metallic cylinders, the non-planar geometry of the array and 70%
smaller width lowers its cross section to levels below that of the body
and clothing alone. The cylinder array does have a unique feature in
its farfield pattern, that of significant sidelobes at approximately 20
degrees to either side of the main beam. These sidelobes might be
used for discrimination of metal cylinder arrays. The addition of nails
increases the magnitude of the maximum backscatter, but reduces the
characteristic sidelobes in the farfield pattern, indicating that clutter
is introduced with the addition of nails.

The effects of wrinkled clothing on both body-only, and body with
cylinder cases have been examined. In each case, wrinkled clothing
had only a small effect on the magnitude and structure of the farfield
patterns. Analysis of the body-only case (Figure 10) shows that added
wrinkles decrease the field magnitude at 180 degrees, but cause no
large sidelobes as indicated in the metal cylinder case of Figure 9.

The farfield magnitude at 180 degrees is slightly reduced when the
metal cylinders are covered with wrinkled clothing, and the sidelobe
structure is distorted, but not significantly enough to mask the effects
of the reflected fields from the metal objects as illustrated by Figure 11.
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Figure 10. Comparison of scattered farfield radiation patterns for
wrinkles of varied intensity covering only flesh.

Figure 11. Comparison of scattered farfield radiation patterns with
wrinkles of varied intensity covering six metal cylinders.

Because one of the major goals in detection of body-worn IEDs
is detection at a safe distance, the relative invariance of the farfield
radiation is a clear indicator that the added wrinkled clothing clutter
— which generates noticeable scattering in the nearfield patterns —
does not lessen detectability of metal cylinders. In addition, the added
wrinkles will not significantly alter the sidelobe structure sufficiently to
camouflage IEDs (Figure 11), or cause a false alarm for safe individuals
(Figure 10).
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6. NONUNIFORM CYLINDER SPACING

For all of the previously mentioned cases, it was assumed that the
spacing of the cylinders was uniform. The uniform spacing was used
to simulate the situation of an IED vest with uniform slots as shown in
Figure 1. However, it is to be expected that the exact uniformity of the
spacing of the cylinders contributes greatly to the farfield scattering
sidelobes at ±18◦ relative to the backscatter direction exhibited in
Figures 9 and 11 since the cylinders become, in effect, an array with
constructive interference in those directions. In order to examine
the influence of the amount of uniformity in the array, the FDFD
computational algorithm was implemented for analysis of a cross
sectional geometry where the cylinders are spaced at arbitrary intervals
(Figure 12).

Figure 12. Cross sectional IED geometry for nonuniform spacing of
metal cylinders.

Using this geometry yields the farfield pattern shown in Figure 13,
after normalization to the case where only human tissue and fabric are
present.

Figure 13. Scattered farfield radiation pattern for nonuniform metal
cylinder spacing as normalized to case with no cylinders present.

This image demonstrates that the farfield pattern no longer
exhibits the neat, symmetrical pattern with pronounced sidelobes ±18◦
from the backscatter direction as in the previous cases. This matches
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the expected outcome, since constructive interference does not occur
when the array spacing is uneven.

7. CONCLUSION

Analysis has shown that there are contributions to the nearfield
scattered field from the clothing; that the proximity of metal explosive-
filled cylinders to each other and to the body is critical; that the
addition of nails in the covering layer has great effects on the
farfield pattern; and that the farfield backscattered radiation pattern
may serve as an important discriminator for uniformly spaced IEDs.
However, the intensity of the direct backscattered signal alone is
insufficient for discrimination. A tight array of nails adds clutter that
distorts the scattering farfield pattern enough to obscure the cylindrical
IED array. It has been observed that the addition of wrinkled clothing
adds significant clutter to the nearfield patterns, though it contributes
much less to the farfield backscatter than does the array of 35 nails.
These effects show that the addition of wrinkled clothing would not
significantly hinder the radar-based detection of body-worn IEDs at a
distance. This study did not consider subject movement, which is likely
to occur in practice. Discriminating targets on moving individuals is a
more challenging problem and is the subject of further investigation.
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