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Abstract—Communication systems operating at frequencies above
10 GHz in equatorial climates are subjected to many fade occurrences
due to heavy rain. Rain rate analysis using 1-minute data for 10 years
(1996–2006) measurements in Penang shows that the rain exceeded
126.8 mm/h for 0.01% of a year (R0.01). Simultaneous measurements
of Ku-band rain attenuation give A0.01 as 22 dB. The rain rate and
attenuation are characterized by the presence of breakpoints in the
respective exceedance curves. The attenuation exceeds the fade margin
for about 8.8 hours in a year.

1. INTRODUCTION

In the design low-margin Ku-band satellite traffic links, such as
those for direct-to-home very small aperture terminals (DTH/VSAT)
systems, detailed propagation information must be considered that
provides insights into performance, availability, and quality of service
and customer perceptions. Ku-band TV services are affected by
outages for time-critical transmission such as real-time news and
sports broadcasting [6]. When the rain rate increases rain attenuation
increases, frequently to a point where the communication link fails.
DTH/VSAT system, for example, may tolerate a signal 10 dB below
its normal signal level for only 0.01 percent of the time dependent on its
requirement. For such a system the yearly rain rate statistics must be
obtained for every location where a communication link is planned [4].
The effect of rain attenuation on communication systems has been of
interest to many researchers but limited investigations in the tropics
have been reported [9, 7]. The lack of data for both rain rate and rain
attenuation has lead to noticeable deviation of the prediction models
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for these regions. This paper analyses the rainfall for the past 10 years
and compares it with existing models.

2. MEASUREMENT SETUP

The main station for the experiment was located at University Sains
Malaysia (USM) (Lat.:5.17◦N and Long.:100.4◦E) in Nibong Tebal,
Penang and is about 7 km from the sea and about 57 m above mean-
sea-level. Looking towards the SUPERBIRD–C satellite at 144◦E, the
elevation and azimuth angle of the receiver antenna are 40.1◦ and 95.4◦,
respectively. The downlink frequency is 12.255 GHz. The receiver
antenna is an off-centre 2.4 m parabolic dish with an offset angle of
72.5◦. The output of the LNB at the dish is connected to a data
logger, which is interfaced to a computer by a LABVIEW software.
The software was programmed to record the peaks of 60 successive
samples each of 1 second duration. The software then calculates the
mean of these 60 peak values giving an averaged peak values in 1 min.
To account for any variation in the satellite signal strength due to
orbital variations, the average clear day signal strengths on the day
prior to and after the rainy day(s) were used in computing the rain
attenuation [11, 12]. The recordings showed that the mean rate of
signal level variations due to rain attenuation is much smaller than
that of scintillation [8].

The 1-minute rain gauge has a tipping bucket of 0.5 mm per tip.
The aperture area of the collecting surface is 400 cm2. The accuracy of
the gauge is ±1% at 1 liter /hour with a measuring range of minimum
5 mm/h to a maximum of 400 mm/h. The rain gauge is accurate to
within 2% up to 200 mm/hr and 3% up to 380 mm/hr. The resolution
of the rain gauge is 0.01% and the data logger time stamp resolution
is 1 second. The data logger samples the data at one second intervals
and averages the data over 1 minute interval.

3. RESULTS AND DISCUSSION

Malaysia experiences heavy rain through out the year and the rainfall
distribution is patterned by monsoon activities. The Northeast
monsoon (wet season) is from October to March and the Southwest
monsoon (dry season) is from April to September [10]. Figure 1 shows
the exceeded average of 10 years rain rate and attenuation curves for
the two seasons. In the wet season, the rainfall is mainly convectional
with strong wind effects. The rain rate and attenuation probability
of occurrence for the wet season were higher than for the dry season.
The probability of occurrence values for rain attenuation was greater



Progress In Electromagnetics Research, PIER 76, 2007 197

than the rain rate for both the seasons. This is because the frequency
of rain in the slant path is higher than the rain measured at site, a
point [7]. The maximum rain attenuation and rain rate recorded were
38 dB and 230 mm/h.
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Figure 1. Probability of occurrence of rain rate and rain attenuation
for two seasons.

Figure 2 shows the percent of time of the measured rain rate
is exceeded computed from 10 years records. The cumulative rain
rate at 0.01% of time is 126.1 mm/h. The Crane [1] and ITU-R [2]
models places Malaysia in the tropical ‘H’ and ‘P’ climate regions,
respectively. At 0.01% of time the rain rate for Crane and ITU-R
are 209.3 mm/h and 120 mm/h [3], respectively. For comparison, the
ITU-R model follow closely to the measured rain rate values until
it reaches the breakpoint (the point at which the slope changes),
indicating the tendency for saturation. This is because stratiform
and convective rainfall was taken into consideration for developing
rainfall climate zones. The available measured instantaneous rainfall
rate distributions were pooled for each of the climate regions and used
to construct a median rainfall rate distribution for the region. The
Crane model predicted higher than the measured rain rate at 0.1% of
time and lower. This is because the climate region boundaries were set
prior to compiling the rain rate statistics for each region. Therefore,
for the tropical region ‘H’ the measured rain rate distributions were
pooled based data available from 7 station years. Figure 3 shows
the cumulative distributions of the measured and predicted rain
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Figure 2. Predicted and measured rain rate cumulative distributions.
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Figure 3. Predicted and measured rain attenuation cumulative
distributions.

attenuation exceeded for a given percent of time. The breakpoint
is also marked in the attenuation curve at 25 dB. This breakpoint
is dependent on the breakpoint in the rain rate exceedence curve.
The lower breakpoint occurs when rain changes from stratiform to
convective [8]. The one at high rain rate occurs due to saturation of
rain. When rain reaches its saturation point, the rain column height
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is constant and maximum (10 km). However, the rain cell diameter
continues to decrease with increasing rain rate [13, 14]. Therefore, at
high rain rate, a particular volume of rain that is a combination of rain
cell diameter, rain column height and rain rate cannot be exceeded and
the rain volume appears to saturate. The ITU-R (2005) model follows
the measured rain attenuation closely until it reaches the breakpoint.
The Crane (1996) model overestimates the attenuation at low and high
rain rates. This is because the model was developed on a large number
of rain rate observation that were not taken at either the locations of
the attenuation paths or during the measurement periods of the data
in the database [1]. For Ku-band satellite services, a threshold of 7 dB
is generally considered as the economical limit [5]. From Figure 3,
0.1 % of time of the year, correspond to 8.8 hours, the fade margin is
greater than 7 dB.

4. CONCLUSION

The available rain rate and attenuation prediction models are often not
suitable for equatorial climates. There is a high correlation between
the rain rate and attenuation exceeded values in average years that
would be useful in determining the link fade margin. The rain rate
and attenuation are characterized by the presence of breakpoints in
the respective curves.
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