Progress In Electromagnetics Research, PIER 76, 153—182, 2007

HIGH FREQUENCY EXPRESSIONS FOR THE FIELD
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Abstract—High frequency field expressions for a two dimensional
reflector are derived. The reflector is placed in a homogenous and
reciprocal chiral medium. Since geometrical optics fails at caustics
so Maslovs method has been used to find the field expressions which
are also valid around caustics. Examples of parabolic and circular
reflectors have been considered.

1. INTRODUCTION

Asymptotic ray theory (ART) or the geometrical optics approximation
is widely used to study various kinds of problems in the areas of
electromagnetics, acoustic waves, seismic waves, etc. [1-3]. It is
also well known that the geometrical optics fails in the vicinity of
caustic. So, in order to study the field behavior near caustic, other
approach is required. Maslov proposed a method to predict the field
in the caustic region [4]. Maslov’s method combines the simplicity
of asymptotic ray theory and the generality of the Fourier transform
method. This is achieved by representing the geometrical optics fields
in terms of mixed coordinates consisting of space coordinates and wave
vector coordinates. That is by representing the field in terms of six
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coordinates. It may be noted that information of ray trajectories
is included in both space coordinates R = (z,y,2) and wave vector
coordinates P = (pg, py, p2)-

Solving the Hamiltonian equations under the prescribed initial
conditions, one can construct the geometrical optics field in space R,
which is valid except in the vicinity of caustic. Near the caustic, the
expression for the geometrical optics field in spatial space is rewritten
in mixed domain. The expression in mixed domain is related to the
original domain R through the asymptotic Fourier transform.

Focusing systems have been analyzed by many authors [5-21]. A
number of research problems have been analyzed using the Maslov’s
method [10-21]. In present discussion, our interest is to study GO fields
associated with a cylindrical reflector placed in a lossless, homogeneous
and reciprocal chiral medium. Number of caustics, locations of
the caustics, and finite field around the caustics is of interest. In
Section 2, we have discussed geometrical optics (GO) method and
Maslov’s method in ordinary medium. Extension of GO to reciprocal,
homogenous and lossless medium is discussed in Section 3. In section 4
we have determined GO field around a cylindrical reflector placed in
chiral medium, and have determined finite field around around caustics
using Maslov’s Method. In Sections 4.1 and 4.2 we have considered the
parabolic and circular cylindrical reflectors as examples. Results and
plots around caustics are discussed in Section 5. Concluding remarks
are presented in Section 6.

2. GEOMETRICAL OPTICS AND MASLOV’S METHOD
IN ORDINARY MEDIUM

Consider the scalar wave equation
(V2 + E2n)u(r) =0 (1)

where 7 = (z,2), V? = 0?/02% 4+ 9%/02*, k = w,/pe€ is wavenumber,
n is index of refraction of the medium, which in our problem is a
constant. Medium is homogeneous and isotropic. Solution of (1) may
be assumed in the form of asymptotic series in powers of (jk)~! as

u(r) = i A™(r)

m=0 (]k)m

exp(—jk®) (2)

Substituting (2) in (1) and equating coefficients of k? we get eikonal
equation as [22]

(V®)2 —n? =0 (3)
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Equating co-efficient of k we get transport equation
2VANV® + AV?® =0 (4)

where we have retained only A° and has denoted it with A. Since we
have assumed k to be large so we have neglected higher order terms.

We define wave vector p = V® and Hamiltonian H = (p.p—n?)/2,
so the eikonal equation becomes H = 0. Equation (3) can be solved
by method of characteristic, as follow

<= (50)
= = (5b)
% _ %—ZI — 0 (50)

where 7 is parameter along the ray. Solution of Hamilton’s equations
(5) is

T =&+ DT (6a)
Pz = DPz0 (6C)
Pz = P20 (6d)
where (£,¢) and (pg0,p.0) are initial values of (z,z) and (pg,p.)

respectively. The phase function is given by

® = By (€) + /0 " n2dr = @y (&) + n’r (7)

where ®( (&) is initial phase at (£, ¢). The solution of transport equation
is [22]

A(r) = Ao(¢)7 /2 (8)
where Ay () is initial field and J = %, where D(7) = 9(z,2)/0(§, T)

is the Jacobian of transformation from ray co-ordinates (£, 7) to space
co-ordinates (x,z). Now we can write approximate solution of (1),
known as GO solution, as

u(r) = up(€)J V2 exp(—jkn?r) (9)
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where up(§) = Ao(§) exp{—jkPo(§)}. Equation (9) predicts infinite
amplitudes at points where J = 0 which is not realistic. This situation
can be avoided and finite field around caustic may be found as follow
using Maslov’s Method [4, 11].

The solution may be assumed in the form of the Fourier transform
and is given as

ur) = [ Tla,po) expl-gkW(e.p.) +poldp. (10

Equation (10) can be solved using stationary phase method in the
region much away from the caustic. The resulting solution is GO
solution so it should agree with GO solution given by (9). Identifying
the solution with (9), explicit expression for ¥(z,p,) and T'(x,p,) can
be obtained. Although solution agrees at stationary points of p, but
we assume that they agree for all values of p,. The field near caustics
is given as

k 1SS 9 3 -1/2 .
u(r) =\ [ 40©) [T5E] T explmgk{@+nt—zoptp.dp.
()

where zg is the value of z at stationary point of p,, given by (6a). The

expression J %";Z can be calculated more simply as

dp. 1 O(z,p.)
' %: = D) oe. ) 12

3. GEOMETRICAL OPTICS IN CHIRAL MEDIUM

Chiral medium supports left circularly polarized (LCP) and right
circularly polarized (RCP) modes. There are more than one ways
to define constitutive relations of chiral medium and we will use DBF
constitutive relations as follow [23]

D = ¢(E+ 8V x E) (13a)
B = u(H+ 5V x H) (13b)

where €, p and ( is permittivity, permeability and chirality constants
of the medium. € and p has usual dimensions and 3 has the
dimension of length. Using these constitutive relations, solution of
Maxwell’s equations results in coupled differential equations. If we use
the following transformation [23], we can have uncoupled differential
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equations

E=Q. _j\/EQR (14a)
H = Q- (14b)

where Qr and Qp, represents LCP and RCP waves, respectively, and
satisfy the following equations

(V2 +#kn3)Qr =0 (15a)
(V2 +k™3) Qr = 0 (15b)

where n; = ﬁ and ng = ﬁ are equivalent refractive indices of
the medium seen by LCP and RCP waves respectively, and k = w,/pe.

Equation (15) shows that fields in chiral medium may be treated in
a manner similar to ordinary medium if we use the transformation (14).
So GO solution for chiral medium can be obtained in a manner similar
to ordinary medium as is discussed in Section 2. Now we have two types
of polarizations so, we have to solve for both waves independently. The
total field will be the superposition of two contributions.

4. GEOMETRIC OPTICS FIELD OF A CYLINDRICAL
REFLECTOR PLACED IN CHIRAL MEDIUM

Reflection of plane waves traveling in chiral medium has been
considered by [24]. We recapitulate it here to introduce our notations
and to present it in a form suitable for our present work. Consider
reflection of RCP wave from perfect electric conducting (PEC) plane
lying along xy-plane as shown in Figure 1. An RCP wave traveling
with phase velocity kim and amplitude unity, is incident on the plane
making angle 1 with z-axis. Reflected wave is composed of two waves
with opposite handedness. An LCP wave is reflected making angle

SR y4 LCP

Figure 1. Reflection of RCP waves from PEC plane.
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P = sinfl(% sine) and with amplitude of —2%%Y _ The phase

cosy+cos iy °
velocity of LCP wave is kle An RCP wave is reflected making angle
¢ and amplitude S5Y=COS¥L  Tf woe take B > 0, then n; > no and

cos +cos 1 *
Y1 < Y i.e. LCP wave bends towards normal, this is because it is

slower than RCP. If 8 < 0, the situation reverses, and in the rest of
paper we will consider only 3 > 0. Two points are to be noted here,
firstly, when 8 = 0, then ny = ny = 1 and ¥; = 1, so RCP wave
diminishes and LCP wave has amplitude unity. This is the case of
reflection of RCP wave from PEC plane in simple isotropic medium.
Secondly, greater the value of 3, the greater is the difference between
1/} and 1,[)1.

Similarly when an LCP wave with unit amplitude is incident on
PEC plane making angle ¢ with z-axis, as shown in Figure 2, we get
two reflected waves of opposite handedness. An RCP wave is reflected

at angle ¥y = sin_l(Z—; sin 1) with amplitude %, and an LCP

wave at angle 1) and amplitude % Since 19 > 1, the RCP

wave bends away from z-axis because it is faster than LCP. Again
we can see that, firstly, for 3 = 0, we get only an RCP wave with
amplitude unity and 9 = 1. Secondly as (3 increases, the difference
between 19 and v increases.

LCP Y4 LCP

8’!""9[3 //

Figure 2. Reflection of LCP waves from PEC plane.

When both LCP and RCP hit PEC plane boundary there are four
reflected waves. We will calculate the GO field for these four waves
separately. To find the reflected wave vectors of these waves we will
consider cylindrical boundary as a plane, locally. Henceforth, we will
designate these waves as RR, RL, LL and LR. Quantities designated as
RR and RL are RCP and LCP reflected wave components, respectively,
when RCP is incident. Quantities designated as LL and LR are LCP
and RCP reflected waves, respectively, when LCP is incident wave.

Consider a two dimensional conducting curved surface which is
uniform in y-direction and is defined by ¢ = ¢g(§), as shown in Figure 3.
The reflector is placed in homogenous and reciprocal chiral medium
defined by constitutive relations (1). Let two plane waves are traveling
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X

A

normal

LCP+RCP

t=9(8)

LL+RR J

Figure 3. Cylindrical reflector in chiral media.

in chiral medium along z-axis of opposite handedness. Solutions of
(15) for plane waves traveling along positive z-axis can be found as
Qr = (ay + jay) exp(—jkniz)
Qr = (a, — jay) exp(—jkns2)
where a, and a, are unit vectors along x and y axis respectively. We

suppress the polarization, and henceforth it will remain suppressed,
and take the incident fields to be of unit amplitudes as follow

Qr = exp(—jkniz) (16a)
Qr = exp(—jknaz) (16b)

Consider the case of normal incidence such that these waves are
incident at angle iy with surface normal a, of the surface of the
reflector. The surface normal is given by

a, = sinvya, + cosya, (17)

where 1 is the angle made by the normal with z-axis, and is given by

g .
siny = NiEw0) (18a)
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1

= T

(18b)

Prime represents the derivative. The reflected wave vectors of LL, RR,

RL and LR waves are given as

PLL = —nqsin2ya, — nqcos2ya,
PrrR = —ngsin2ipa, — no cos2ya,
n
Prr, = —nisin{y + sirfl(n—2 sin) }a,
1

—ny cos{y + sin_l(@ sinvy)}a,
ni
. 1,1 .
PLr = —ngsin{y + sin (n_ sin) }ay
2

—ng cos{y) + sin_l(E sinvy)}a,
n2

(19a)
(19Db)

(19¢)

(19d)

The initial fields and initial phases on the surface of the reflector for

these rays are given as

cOS 1) — cos Yo

Aoz = cos 1 + cos P2
e cos 1) — cos
cos ) + cos Y1
Aopp = 2 cos
cos ) + cos Y1
Aorr = 2 cosy

cos 1 + cos P2
QoL = n1¢
Porr = n2(
Dorr = na(
Sorr = n1¢

The Jacobian of transformations for these rays are given as

JLL = 1—2TL17'—

oY n? — ndsin? + ng cos P

9¢ n? —n3sin?q

(20a)
(20Db)

(20c¢)

(21D)
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% niT
cos {w + Sinfl(Z—f Sinw)} + tan ) sin {¢ + sinfl(Z—f sin ¢)}
(21c)
o n3 — n}sin? + nq cos
Jir = 1— A
3 n3 — n?sin?
noT
X
cos {¢ + sin_l(Z—; sin w)} + tan ¢ sin {¢ + sin_l(% sin @D)}
(21d)
and the GO field for each ray can now be written as
urr(r) = Aorr(€) exp{ Gk(®orr(€) +nir } 1/2 (22a)
urn(r) = Aonr(€) exp {—jk(®orr(€) +n3r)} Jui®  (22b)
urp(r) = Aorr(€) exp { —jk(@ore (&) + nir) } I 1/2 (22¢)
ura(r) = Aor(€) exp { —jk(@oLr(€) +n3r)} I (224)

The equations of caustics where Jacobian becomes zero are given by

nmT = ;gi (23a)

nar — % gi (23b)

mT = {cos {@Z)—I—sin_1 <Z—j sin 1/))}+tanwsin {@M—sin_l <Z—i sin w>}}
) ni—nisin’y g (23¢)

\/m —+ ng cos P 0
noT = {Cos{w—i-sin_l (Z—; sin w> }—i—tanw sin {w—l-sin_l (Z—; sin ¢)}}

n% — n? sin?
X sy % (23d)

\/n3 —n%sin2w+nlcoswa¢

Since GO becomes infinite at caustics, so we find approximate field at
caustics by Maslov’s Method. To calculate field at caustic by (11) we
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need expression (12) which are found below

OpsLL 9. OY
JrL 5. 2nq sin” 2¢y a¢ (24a)
Op:RR 9. OY
RR™ 5 = 2ng sin” 29y o€ (24b)
g OpzrL _ ny sin? {4 + sin ™! (%2 sin )}
"0z cos{w+sin*1(2—f sin) }+tan ¢ sjn{¢+sjnfl(z_? sin)}
\/m—i-n cos
x Yt e 0oy 09 (24c)
n? — n% sin? 1) 23
T Op:LR ng sin*{y 4 sin~! (2 sing)}
LR

9z cos{w+sin_1(2—; sin )} +tan 1 sin{t)+sin~* (7L sine)}
n3 — n?sin? ¢ + ny cos 1P o

n% — n% sin? ¢ 9¢

X (24d)

and the finite fields around the caustics, using (11) and (24) are given
by

| ke Opzrr]
urr(r) = ,72_7T/— Aorr(§) {JLL %ZLL}

X exp [—ﬂﬁ {‘I)OLL+7”L%T —20LLP:LL+2D:LL H dp.r1, (25a)

k o r 9 ; —-1/2
urp(r) = \/.7'277/ Aorr(§) | JrR pafR}

X exp [—j k {%RR +N3T — 20RRP-RR+2D:RR H dp.rr (25b)

[ koo [ Operu] '
urp(r) = ]27r/ Aorr(&) |JRL pa:L

X exp [_jk{‘I’ORL +nir —ZORLszL-i—szRLH dp.rr  (25¢)

k 00 r —-1/2
urr(r) = L Aorr(&) |Jrr

j2m

Op-LR]
0z

X exp [_jk{(pOLR + 3T —20LRP:LR+2D:LR H dp.rr (25d)
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4.1. Parabolic Cylindrical Reflector

Consider the parabolic reflector defined by ¢ = f — £¢2/4f where f is
focal length of parabola. Using (18)

2f

COSY = ————r 26a
V= Ve .
: §
siny = ——— 26b
VE +4f? (200)
oLV, cos? 1
7Y = 2
o€ 57 (26¢)
Substituting (26b) in (21) we get Jacobians as follow
2
Jrp=1-— anCOSf L (27a)
2
JRR =1- ngTCOSf w (27b)
n? — n3sin ¢ + ng cos
Jrr=1—
2fy\/n? —n%sin2¢
2
n1T COS
T Siany s Ty 7
cos sin” " (72 sin an v sin sin™" (2 sin
n3 —n?sin® v + ny cos
Jor=1-—
2f1/n3 — n?sin®y
2
NaT COS
S (T T e e e
cos sin”™ (7 sin an 1 sin sin”™" (7, sin
and the GO field is found using (20) and (27) in (22) as
cosp — cos{sin_l(% sine)}
= n —jk
ur(r) [cosw + cos{sin_l(% sin)} exp(—jknic)
9 1-1/2
X ll - anCO; 1/]1 exp(—jkn3T) (28a)

cos ¢ — cos{sin~" (12 sin ¢)) }

cos ) + cos{sin ! (R2siny)}

urp(r) = [ ] exp(—jkna()
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cos? 1) i/
X ll — noT 7 ] exp(—jkn3T) (28b)
B 2 cos .
urL(r) = [cosw + cos{sin_l(% sin w)}] exp(—jknaC)

x[1— niT cos? P
cos{t+sin~! (% sin ) } +tan ¢ sin{¢ —l—sin_l(% sine)}
\/n? — n2sin? ) + ng cos
! 2 ]_1/2 exp(—jkn%T) (28¢)
2f1/n? — n}sin® ¢
2 cos
cos ) + cos{sin (7L sine)}

x[1— NoT Cos2 P
cos{w+sin71(2—; sin ) } +tan ¢ sin{¢ —|—sin*1(2—; sin)}

\/n% —n?sin? ) + nq cosy
2 ! ! ]*1/2 exp(—jkn3r) (28d)

2f1/n% —n?sin?y

X

urr(r) = [ ] exp(—jkni¢)

X

equations of caustics are written using (23) and (26b) as

f
— 2
mT = 3 m (29a)
NoT = L (29b)
cosZ
2f n? —n3sin
nT = 3
cos= Y \/n? — n3sin? ) + ng cos
X {COS{T,Z) —I—Sin_l(@ sin 1)} +tan ¢ sin{¢+sin ! (@ sin w)}}
ni ni
(29¢)
2f n% — n% sin? ¢
noT =

cos? ¢ \/n3 — n? sin ) + ny cos 1
X {cos{w—i—sin_l(E sinty)} + tan ¢ sin{y + sin_l(E sin w)}}
no no
(29d)
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and (24) becomes

2
JrL 8]:;ZLL = ny sin’ 2w—cosf v (30a)
op.,, cos
JRR paf = nasin’ 2 v (30b)
7 Op-RIL - ny cos? P Sin2{¢ + Sin_l(% sine)}
RL

0z cos{w—i—sin_l(% sin ) }+tan ¢ sin{y + sin_l(Z—f sin)}
\/1n? —n3sin? ¢ + ng cos
Lo e b sy (30¢)
2f1/n? —njsin® v
Op.LR ng cos? 1 sin? {4 + sinfl(% sin)}
oz cos{w—l—sin_l(% sin) }+tan ¢ sin{w—i—sin_l(% sin)}

X

JLRr

2 2 gin2
ns — ny sin” Y + nj cosy
xy 2 1 (30d)
2f1/n3 — n?sin®y

The finite fields around caustics are found for each ray as follow.
Using (26a)

cos 21

=2ft 31
E=2ftany, (=fp o0 (31)
For LL ray,
=&  —z+2ftany
" perr | misin2g (322)
PzLL = —MN1 €082y (32b)
dp,rr, = 2n1sin 2¢dyp (32¢)

putting (20), (30a) and (32) in (25a), we get finite field around caustic
for LL ray as

2kfny cos ) — cos{sinfl(% sine) }
ure(r g / cosy + cos{sin_l(ﬂ sin)} secy

x exp [—jkny {2f — xsin2¢) — z cos 24 }] dip (33)
For RR ray
ooz 8_ Tet2ftany (34a)
PxRR ng sin 21
D2RR = —MNg COS 2 (34b)

dp,rr = 2n9 sin 2¢dy (34c)
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Using (20), (30b) and (34) in (25b) we get

2k fno cosp — cos{sin_l(% sin)}
urR(r g lcos Y+ cos{sirfl(”—2 sin w)}] secy

x exp [—jkng {2f — xsin2¢) — z cos 24 }| dyp (35)

For RL ray
per = —nycos{v+ sin—l(@ sin )} (36a)

sm{w +sin™" (72 siny) Hi/n? — nsin? ¢ + ng cos w}
dp:r =
n? — nsin? ¢

(36b)
. m—&z —x+ 2f tan (36¢)

perr  masin{y +sin (22 sing)}
Using (20), (30c) and (36) in (25c¢) we get

" kfny /
RL(T g cos ) + cos{sm (— sinv)}

L na no 1/2
X {cos{?b—l—sin_ (== sin¥)} +tan 1 sin{t)+sin~(— sin ¢)}}
ny ni

— 1/2
y [\/n%—ngsm +ng cos

2202
ny—nssin“

exp[—jkni{¥Yrr+2p.rr Jdi

(37)
where
VRrr + 2p2rL = f% (z — 2f tant)) sin{y) + sin_l(Z—i sint) }
_ {z — fESZ;Zi } cos{v + sin_l(% sine)}
For LR ray
p:Lr = —ngcos{y + sin_l(E sin)} (38a)

sin{¢ +sin™ " (7L siny) Hi/n3 — n?sin ¢ + nq cos d)}

n3 — n?sin? ¢

dp.Lr = n2
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(38b)
_ r—§ —x +2ftany

= 38
PzLrR  mesin{y + sin_l(Z—; siny)} (38<)

using (20), (30d) and (38) in (25d) we get

kfno
urr(r i cos ¢ + cos{sm ("1 sinv)}

i : g 1/2
X {cos{w—i-sm 1(—sm1/1)}+tanwsm{1/1+81n 1(—51111/1)}}
ny n2

1/2

2202
ns—mnj sin” Y +nq cos .
X [ exp[—jkno {Vrr+2p.LR}|dV

22 o2
ns—nj sin“

(39)
where
Vint2pin = [~ (o= 2f tan ) sinfy +sin (L sin )
2
- {z — fZZZQ Zﬁ } cos{1) + sin_l(% sin)}

4.2. Circular Cylindrical Reflector

As an other example consider circular cylindrical reflector defined by

¢ =+/a? — &2

where a is the radius of cylinder. Using (18)

cost) = g (40a)
siny = g (40b)
oy 1
= == 40c
%€ "¢ (40¢c)
Substituting (40b) in (21) we get Jacobians as follow
Jip = 1-2-—"27 (41a)

acos¢
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noT

Jpp = 1 -2 41b
R a cos P (41b)
n? —n}sin? 1 + ny cos
Jrr = 1—
acosy/n? — n3sin? 1
« niT
cos{v + sinfl(% sint)} + tan v sin{y + sin’l(% sine)}
(41c)
n3 — n?sin? v + nj cos P
Jir = 1—
acosipy/n3 —n?sin?y
% noT
cos{¢ + sin_l(Z—; siny)} + tan sin{¢y + sin_l(Z—; sin)}
(41d)
GO field using (41) and (20) in (22) is given as
cos ) — cos{sinfl("—; sin)}
= " —jk
urr(r) Losw + cos{sin_l(% sin)} exp(=jkm)
mr 1712 .
X {1 - 2acésw} exp(—jkniT) (42a)
cos P — cos{sin_l(”—f sin)}
— n o .k'
urr(r) [cosw + cos{sin_l(% sin)} exp(=jknzC)
noT —1/2 .
X {1 - 2@(1281/}} exp(—jkn3t) (42b)
2 cos

| et

cos 1 + cos{sin~?! (32 siny)}

nT
x|1—
[ cos{¢+sin_1(2—f sin) }+tan sin{w—i—sin_l(% sin)}
2 2 qin2
\/n] — n3sin® Y 4 ng cos ¢]71/2 exp(—jkn3r) (420)
a cos P n% — n% sin? ¢
upp(r) = 2cosy
LR cos ¢ + cos{sin_l(% sin)}

x[1

X

exp(—jkni()

noT
; cos{z,b—l—sinfl(% sin )} +tan 1 sin{t)+sin ! (rsiny)}
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n3 —n?sin ¢ + ny cosy

]—1/2

X exp(—jkn3T) (42d)

acosy/ng —n? sin? ¢
equations of caustics are found using (40b) in (23) as
1
mT = Sa cos (43a)
1
naT = Sa cos (43b)
. 1,2 . . .12 .
nmT = {Cos{w +sin” (—siny)} + tant sin{tp + sin™ " (— sin w)}}
ni ni
acosy/n? — nZsin
x L2 (43¢)

n? —n}sin? 1 + ny cos

{cos{w + sirfl(E sin)} + tan ) sin{y) + Sirfl(E sin w)}}
no n2

noT

acosy/ng — n? sin? 4

X (43d)
\/n% — n?sin? ¢ + ny cosy

and using (40b) in (24) we have

Op-rr . nisin®2¢

J =2 44
L5, acos (442)
Op.RR ng sin® 2¢
J =2 44b
RRE ™5, a cos (44b)
Op»RI ny sin?{¢ + sin ™! (22 sin )}
JrL = :

9z cos{+sin~ (22 sin )} +tan ¢ sin{¢p+sin~ ! (22 sin ) }

n? —n%sin? ¢ + ny cos

X (44c)
acosy/n? —n3 sin? ¢
Op:LR ng sin®{1 + sin_l(;‘—; sin)}

JLR 0z cos{d;—ksin_l(% sin)}+tan sin{i/)—ksin_l(% sin)}

n2 — n?sin® Y + nq cos
L\ —ndsin® g ¥ )

acosy/n3 — n? sin? 1

Finite field around caustics are found as follow.



170 Faryad and Naqvi

From (40a)
& =asiny, ¢ =acost (45)
For LL ray,
T:x—fz —a:—i—‘asinw (46)
PzLL n1 sin 29

using (20), (32b), (44a) and (46) in (25a) we get

k cos 1) — cos{sin™! (L gin
urr(r o v { - _1(22 - 2l [cos 1] /2
Jm cos ¢ + cos{sin™" (JL sin¢))}
X exp| jknl{Qa cos ) — xsin 2y — z cos 29 }dyp (47)
For RR ray .
T:x—f:—x—i—asmw (48)

PxRR ng sin 2y
using (20), (34b),(44a) and (48) in (25b)we get

kany [ [cost) — cosfsin™" (1 sinv)} 1/2
uRp(r Jm [cosw + cos{sin—l(m sin )} [cos 1]

X exp| jkmg{Qa cos ) — xsin 2y — z cos 24 }dyp (49)

For RL ray

r—§ —z + asiny
perr  nisin{y) +sin~ (22 sin )}

T =

using (20), (36b), (44b) and (50) in (25¢c) we get
" kany / 2 cos? P
re(r j2m cos 1 + cos{sin~! (2siny)}

|: .o—1,N2 . . .o—1,N2 . 1/2
X |cos{t) + sin” " (— sin )} + tan v sin{ty) + sin™ " (— sin w)}]
n1 ni

1/2

exp [—jkn1 {VrL + 2p.rL}] d

n? — n3sin® 1 + ng cos 1
X
n% — n% sin? ¢
(51)
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where

WRr + 2p2r1 = ™, cos®) — (z — asiny) sin{y + sin_l(@ sin)}
ni ni

—{z —acosy}}cos{v + sin_l(% sin)}
1

For LR ray
sz—fz . —:c+.a_slin1/) . (52)
pzrr  ngsin{y +sin” (lsiny)}
using ( (38b), (44c) and (52) in (25d) we get

" kans / 2 cos? P
LR(r j2m cos ) + cos{sin™! (7 sine)}

/
X [<3os{1[)+sin_1(n1 sin) }+tan sin{d)—ksin_l(@ sin 1/1)}]1 i
no n2

1/2

— exp|—jkna {V L r+2p.LR }Jd

n3—n?sin? ¢+ny cosyp
X
n3—n?sin

(53)

where

Vir+2p.Lr = Eacosg[;—(:17—asin@b)sin{@[;—I—sin_l(E sin)}
n9 ng

—{z—acost}} cos{t) + sin_l(% sina)}
2

5. RESULTS AND DISCUSSION

Contour plots of (33), (35), (37), (39), (47), (49), (51) and (53) are
given in Figure 4 to Figure 11, respectively. Each figure contains four
plots, that is, for kG =0, 0.01, 0.05 and 0.1. We have taken kf = 100 for
parabolic reflector and ka = 100 for circular reflector. Integration has
been performed from ¢ = —7/4 to ¢ = 7/4. In these plots horizontal
axis is kz and vertical axis is kx. Variation of magnitude of the fields
is shown versus kz in Figure 12 to Figure 19.
From equation (6)

mr=not = /(= 2+ (2 — () (54)
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Figure 4. Equi-amplitude plots of |urr| of parabolic cylindrical
reflector with kf = 100 for (a) k8 = 0, (b) k8 = 0.01, (c) k8 = 0.05

and (d) k3

=0.1.
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Equi-amplitude plots of |urgr| of parabolic cylindrical
reflector with kf = 100 for (a) k5 = 0, (b) k8 = 0.01, (c) kG = 0.05
and (d) k8 = 0.1.
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Figure 6. Equi-amplitude plots of |ugp| of parabolic cylindrical
reflector with kf = 100 for (a) k5 = 0, (b) k8 = 0.01, (c) kG = 0.05
and (d) k8 = 0.1.
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Figure 7. Equi-amplitude plots of |urr| of parabolic cylindrical
reflector with kf = 100 for (a) k5 = 0, (b) k3 = 0.01, (c) kG = 0.05
and (d) k8 =0.1.
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()
Figure 8. Equi-amplitude plots of |ur,z| of circular cylindrical reflector
with kf = 100 for (a) k8 = 0, (b) k8 = 0.01, (c) kB = 0.05 and (d)
kB3 = 0.1.

Figure 9. Equi-amplitude plots of |ugg| of circular cylindrical
reflector with kf = 100 for (a) k5 = 0, (b) k8 = 0.01, (c) kG = 0.05
and (d) kB8 =0.1.
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Figure 10. Equi-amplitude plots of |ugy| of circular cylindrical
reflector with kf = 100 for (a) k6 = 0, (b) k8 = 0.01, (c) kG = 0.05
and (d) k8 = 0.1.

ey

g
fim)
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A

Figure 11. Equi-amplitude plots of |urr| of circular cylindrical

reflector with kf = 100 for (a) k5 = 0, (b) k3 = 0.01, (c) kG = 0.05
and (d) k8 =0.1.
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Figure 12. Plots of |uzy| of parabolic cylindrical reflector at z = 0
for k3 = 0,0.01,0.05,0.1.
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Figure 13. Plots of |ugrpr| of parabolic cylindrical reflector at z = 0
for k8 = 0,0.01,0.05,0.1.

so equations of caustics for ur; and ugrgr of parabolic cylindrical
reflector, (29a) and (29b), are same and is given below using (19a)
and (19b) in (6a) and (6b).

r=2z=0 (55)

This is the same equation as given in [13] for the case of normal
incidence when parabolic reflector is placed in ordinary medium. This
is also true for circular reflector as is evident from (43a) and (43b) and
equation of caustic is

r = %(3 sint — sin 3v) (56a)

x = %(3 cos 1p — cos 31) (56b)
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Figure 14. Plots of |ugy| of parabolic cylindrical reflector at x = 0
for kG = 0,0.01,0.05,0.1.

13 T T T T

......

10—

Figure 15. Plots of |urp| of parabolic cylindrical reflector at x = 0
for kB = 0,0.01,0.05,0.1.

Again these are the same equations as given in [13] for the case of
normal incidence when circular reflector is placed in ordinary medium.
So caustics for LL and RR rays coincide for all values of k3. This
behavior is depicted in Figures 4, 5, 12 and 13 for parabolic cylindrical
reflector and in Figures 8, 9, 16 and 17 for circular reflector. For
kB=0,n1 =no =1 and

uLL:uRR:0 (57)

for both circular and cylindrical reflectors. As value of k(3 increases,
magnitude of the field around caustic increases.

Equations of caustics of RL and LR rays are given by (29c)
and (29d) for parabolic and by (43c) and (43d) for circular reflector,
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Figure 16. Plots of |urr| of circular cylindrical reflector at = = 0 for
kB = 0,0.01,0.05,0.1.

Figure 17. Plots of |ugrp| of circular cylindrical reflector at = = 0 for
kB =0,0.01,0.05,0.1.

respectively. From Figures 6, 7, 10, 11, 14, 15, 18 and 19, it can be
seen that as k( increases, caustic of RL ray moves to left and caustic of
LR ray moves to right. The greater is k3, the larger is the gap between
focal region of RL and LR ray. The behavior of the field around caustic
is shown in the figures for different values of k3. When k3 =0

URL = ULR = 1/2;{—%“)0 /_O:o secp exp{—jk(2f — xsin2¢) — z cos 2¢) }d)
(58)



Progress In Electromagnetics Research, PIER 76, 2007 179

g T T T

Kf=0
...... -

S kp=0.01 % .
i R
kp=0.05 T

4 -

kp=0.1

20 30 40 A0 60 T a0

Figure 18. Plots of |ugy| of circular cylindrical reflector at = = 0 for
kB = 0,0.01,0.05,0.1.
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Figure 19. Plots of |urg| of circular cylindrical reflector at = = 0 for
kB =0,0.01,0.05,0.1.

for parabolic and
URL = ULR

= \/jji/w\/coswexp{—jk@acosw—m sin 2y —z cos 24) }dap (59)

for circular reflector. The equations of caustics reduce to (55) and (56)
for parabolic and circular reflector respectively. Which is the case of an
ordinary medium. The field expression (58) and (59) are in agreement
with [13] for normal incidence.
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6. CONCLUSIONS

It is found that excitation of a cylindrical reflector, placed in reciprocal
and homogenous chiral medium, by plane wave may yield four focal
points. Two of them are located at the same location as if the reflector
is placed in ordinary medium. Other two focal points are on the
opposite sides of caustic located at ordinary medium location. If LCP
waves is moving slower than RCP (for 5 > 0) then it is focused near
to reflector and RCP wave is focused away from the reflector. The
situation is reversed for # < 0. It is also noted that if medium becomes
achiral 8 = 0, field of LL and RR becomes zero and that of RL and LR
reduces to the case of ordinary medium. As the chirality parameter
increases, the gap among the caustics increases.
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