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Abstract—Various electromagnetic scattering approximations be-
yond the Born assumption have been published during the recent years.
This paper introduces a simple framework of analyses and investigates
in a systematic way the fundamentals of the proposed theories. Our
main focus is to demonstrate the link and similarities between the dif-
ferent scattering approximations employing a common physical basis.
Based on analogies established we try to bridge the apparent gap be-
tween existing theories as well as introducing possible extensions and
refinements.

1. INTRODUCTION

Analytical solutions of electromagnetic (EM) scattering problems exist
for special cases [1, 2]. However, often numerical methods must
be employed based on differential-equation [3] or integral-equation
techniques. In this paper we concentrate on the latter approach.
One solution strategy is to solve the exact problem based on high-
performance algorithms like the Conjugate Gradient-Fast Fourier
Transform (CG-FFT) method [4] and the stabilized Bi-conjugate
Gradient FFT method (BCGS-FFT) [5]. Alternatively, one may apply
other iterative algorithms like the multilevel fast multipole algorithm
(MLFMA) and represent the Green’s function by plane-wave or
spectral representations [6]. Also the method of moments (MoM) can
be employed, where the anomalous region is divided into subdomains
with the electromagnetic parameters within each such subdomain
approximated by so-called basis functions [7]. Another approach is
to employ a combined global and local (GL) technique to model the
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electromagnetic field [8]. To handle mixed cases of both dielectric
and conductive objects, hybrid techniques have been proposed [9].
However, in many cases the computational time can still be prohibitive
high (for example in the case of using repeated modelling as part
of inversion) and one must seek for efficient approximate solutions.
Several approximations to the EM scattering problem have therefore
been proposed in the past. Among these are the extended Born
approximation (EBA) [10], the local non-linear (LN) approximation
[10], the quasi-analytical (QA) approximation [11], the quasi-linear
(QL) approximation [12] and the Diagonal Tensor Approximation
(DTA) [13]. In order to handle more complex media including
larger contrasts and possible anisotropy, also higher-order versions of
these methods have been introduced. Such iterative methods can be
based on the scattering equation of the iterative dissipative method
(MIDM) [14, 15] like the modified Born (MB) approximation [16] or
alternative formulations like the High-Order Generalized Extended
Born Approximation (Ho-GEBA) [17]. The purpose of this paper is
not to analyze the accuracy of these different scattering techniques
for various practical settings. Such results are already available from
the literature in a vast amount. However, there is still a need to
demonstrate in a simple manner how these different scattering theories
relate to each other. In this paper we therefore introduce a common
framework of analyses based on the electric field equation to efficiently
investigate the link and similarities between the various EM scattering
theories. Based on analogies established we try to bridge the apparent
gap between existing theories as well as proposing possible extensions
and refinements. Most of the cited works above are concentrating on
conductive anomalies, but resistive scatterers are of equal importance
since during the recent years the use of low-frequency EM methods
(e.g., Sea Bed Logging) to detect high-resistive hydrocarbon layers
have evolved rapidly [18].

2. BASIC EQUATIONS AND PROBLEM DEFINITION

We consider the case of a 3-D electric scatterer embedded in a
background model, and specialize to the conductive case (the dielectric
case follows by analogy). In Fig. 1, a horizontally layered (1-D)
background model is shown as an example. However, analytical dyadic
Green’s functions can be obtained for various backgrounds ranging
from a homogeneous isotropic [19] and a 1-D isotropic [20] to an
electrically gyrotropic medium [21]. After illuminating the anomalous
region with a time-harmonic electric field, the total field measured at
an arbitrary receiver location �r is governed by the electric field equation
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Figure 1. 3-D scatterer embedded in a layered model (vertical slice).

[19]

Ē(�r ) = Ēb(�r ) +
∫
D

Ge(�r, �r0) · ∆σ(�r0) · Ē(�r0)d�r0 (1)

In Eq. (1) Ē and Ēb are respectively the total and background electric
field vectors and Ge is the dyadic electric Green’s function. Ge is
represented by a 3 × 3 matrix with its three columns corresponding
to a dipole oriented in x, y and z-directions, respectively. The second
order tensor ∆σ represents the contrast function of the inhomogeneous
object defined as

∆σ = σ − σbI (2)

where σb is the background conductivity and I is the unity dyad. Note
that if the dielectric constants are not neglected as here, the quantities
in Eq. (2) should be replaced by σ → σ

′−iωεrε0I and σb → σ′
b−iωεrbε0.

The region of integration D in Eq. (1) is a region surrounding the
anomalous object. In a practical numerical implementation this region
will be subdivided into 3-D cells of a chosen shape. Since Eq. (1)
is equally valid for measurement points outside as well as inside D,
we consider first the problem of computing the total electric inside the
anomalous region for all points �r ∈ D. In this paper we will only discuss
approximate methods in order to speed up the computations. After
having determined the electric field inside the anomalous region, the
field response at any receiver position can be computed using Eq. (1).
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Introduce now the integral operator GD defined as:

GD(x̄) =
∫
D

Ge(�r, �r0) · x̄(�r0)d�r0 (3)

Combination of Eqs. (1) and (3) gives the compact form of the field
equation:

Ē(�r ) = Ēb(�r ) + GD(∆σ · Ē) (4)

Finally, by introducing the scattered electric field vector: Ēs(�r ) =
Ē(�r ) − Ēb(�r ), Eq. (4) can be recast as

Ēs(�r ) = GD(∆σ · Ēb) + GD(∆σ · Ēs) = ĒB(�r ) + GD(∆σ · Ēs) (5)

where the first term on the right-hand side is identified as the (lowest-
order) scattered Born field [22].

In the following we employ Eq. (5) as the physical basis when we
discuss and analyze various possible EM scattering approximations.
First we consider non-iterative methods and investigate possible
approximations of the scattered field. Both source-independent and
data-dependent techniques will be treated. In cases of more complex
anomalies iterative techniques can be useful. In the last part of this
paper such methods will be the topic.

3. NON-ITERATIVE SOLUTIONS

3.1. Source-independent Scattering Tensor

We start with the fundamental approximation

GD(∆σ · Ēs) ∼= GD(∆σ) · Ēs (6)

In Eq. (6) the scattered field is treated apparently as spatially
invariant inside the scatterer (or anomalous region D). However,
this assumption can be somewhat relaxed due to the known singular
behaviour of the dyadic Green’s function. Hence, fast decay of the
amplitude of the dyadic Green’s function allows for spatially varying
scattered fields inside D. However, if the fields varies significantly the
approximation in Eq. (6) will be more dubious.

By combining Eqs. (5) and (6) we arrive at[
I − GD(∆σ)

]
· Ēs(�r ) = ĒB(�r ) (7)
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or alternatively

Ēs(�r ) = ΓQA · ĒB(�r ) (8)

where ΓQA is a scattering tensor defined explicitly as

ΓQA(�r ) =
[
I − GD(∆σ)

]−1
(9)

which is seen to be source-independent. Since ΓQA, in general,
contains non-diagonal values possible cross-polarization is included (at
least to a certain extent). This approximation is known as the Quasi-
Analytical (QA) approximation [11].

We now revisit Eq. (8) and approximate it further:

Ēs(�r ) = ΓQA · ĒB(�r ) = ΓQA · GD(∆σ · Ēb)
∼= ΓQA · GD(∆σ) · Ēb(�r ) ≡ ΓLN · Ēb(�r ) (10)

which is known in the literature as the local non-linear (LN)
approximation [10]. Alternatively, if the total field is considered this
approximation is known as the Extended Born Approximation (EBA)
[10]:

Ē(�r ) = Ēb(�r ) + Ēs(�r ) ∼= Ēb(�r ) + ΓLN · Ēb(�r )

= (I + ΓLN ) · Ēb(�r ) ≡ ΓEBA · Ēb(�r ) (11)

with

ΓEBA = (I + ΓLN ) =
[
I − GD(∆σ)

]−1
≡ ΓQA (12)

From Eq. (10) it follows that LN also restricts the behaviour of the
background field. Hence, LN (and consequently also EBA) will work
poorer than QA in case of close sources. Also, since the scattered field
is approximated based on the behaviour of the background field (cf.
Eqs. (10) and (11)), LN and EBA will not handle EM coupling in an
electrically anisotropic medium well.

If the scattering contrast is small we have in the limit GD(∆σ) →
0 as ∆σ → 0. It follows now from Eqs. (10) and (11) (e.g., limit of LN
and EBA):

Ē(�r ) = Ēb(�r ), Ēs(�r ) = 0 (13)
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which is equivalent with the zero-order Born approximation [22].
Likewise, Eq. (8) gives now (limit of QA):

Ēs(�r ) = ĒB(�r ) (14)

which is equivalent to a first-order Born approximation [22]. Eqs. (13)
and (14) support earlier observations that QA is in general more
accurate than EBA/LN.

Note that specializing to a high-resistive (e.g., low-conductive)
anomalous region gives in the very limit that GD(∆σ) → −σbGD(I).
Hence, the various scattering tensors are now virtually not influenced
by the conductivity of the actual scatterer.

3.2. Source Dependent and Diagonal Scattering Tensor

In this section special cases of the scattering tensor neglecting cross-
polarization are considered. Since the scattering tensor now will be
diagonal, transversal isotropic (TI) type of media can (at least to a
certain extent) be handled. If the contrast function ∆σ has significant
non-diagonal values, higher-order solutions should be considered.
Approximation # 1: QA-type

This derivation can be considered as a ‘hybrid’ QA-method since
it also makes use of the same type of approximation as in Eq. (10),
e.g., we start by assuming

ĒB(�r ) = GD(∆σ · Ēb) ∼= GD(∆σ) · Ēb(�r ) (15)

Adding the background field on both sides of Eq. (15) and reorganizing
gives the revised equation:(

I − GD(∆σ)
)
· Ēb = Ēb − ĒB ⇒ ΓQA ·

(
Ēb − ĒB

)
= Ēb ⇔ [Ab −AB] ξ̄QA = Ēb (16)

where the definition in Eq. (9) has been employed as well. Eq. (16) also
assumes a diagonal scattering tensor ΓQA and introduces its alternative
representation employing a column vector ξ̄QA. Finally, the matrixes
A and Ab are given explicitly by

Ab =

[
Eb,x 0 0
0 Eb,y 0
0 0 Eb,z

]
, AB =

[
EB,x 0 0

0 EB,y 0
0 0 EB,z

]
(17)

In Eq. (17) Eb,i and EB,i (i = x, y, z) represent the three components
of the background field and the scattered Born field, respectively,
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measured along the Cartesian model axes. Based on Eq. (16), the
scattered field is now approximated as:

Ēs(�r ) ∼= ΓQA · ĒB(�r ) = AB · ξ̄QA = AB [Ab −AB]−1 · Ēb(�r )

≡ Ab[Ab −AB]−1 · ĒB(�r ) (18)

which can be considered as a special case of the QA-approximation.
For the source-independent scattering tensor case, we have

already pointed out that QA is a more accurate approximation than
LN/EBA. However, unlike LN/EBA the QA method also needs the
additional computation of the scattered Born field inside the scatterer
(cf. Eq. (18)). Since the data-dependent scattering tensor based
on the diagonal approximation in Eq. (16) also includes computation
of the scattered Born field, QA should always be preferred to LN/EBA
in this case (diagonal versions of the scattering tensors ΓLN and ΓEBA

are closely related to ΓQA as follows from Eq. (12)).
Approximation # 2: QL-type

Alternatively, one may employ a more heuristic approach to
establish a diagonal and data-dependent scattering tensor. By analogy
with the LN-result in Eq. (10) postulate now

Ēs(�r ) = χQL · Ēb(�r ) = Ab · ξ̄QL (19)

where χQL is a diagonal scattering tensor (also called reflectivity
tensor in the literature) yet to be determined. In Eq. (19) we have
also replaced the scattering tensor by its alternative column vector
form (matrix Ab as defined in Eq. (17)). Combining Eqs. (5) and (19)
gives:

Ab · ξ̄QL = GD(∆σ ·Ab · ξ̄QL) + ĒB
∼= GD(∆σ ·Ab) · ξ̄QL + ĒB (20)

where a slow variation of ξ̄QLinside the anomalous region D has been
assumed. Its actual values are determined as those minimizing the
following norm [12]: ∥∥Bb · ξ̄QL − ĒB

∥∥ = min (21)

with

Bb(�r ) = Ab(�r ) − GD(∆σ ·Ab) (22)

By considering a grid of receiver points �rj , j = 1, 2, . . . J representing
a smaller or larger subdomain inside D, solving Eq. (21) is equivalent
to finding a least-squares (LS) solution of the over-determined system:

MQL · ξ̄QL = d̄QL (23)
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where

MQL =



Bb,1

Bb,2

·
·

Bb,J


 , d̄QL =



ĒB,1

ĒB,2

·
·

ĒB,J


 (24)

and Bb,j ≡ Bb(�r = �rj), ĒB,j ≡ ĒB(�r = �rj).
The LS-solution implies a source-dependent scattering tensor on

the form

ξ̄QL =
[
M∗T

QL ·MQL

]−1 ·M∗T
QL · d̄QL (25)

or alternatively

ξ̄QL =


 J∑

j=1

B∗T
b,j ·Bb,j



−1

·


 J∑

j=1

B∗T
b,j · ĒB,j


 (26)

In Eqs. (25) and (26) the star means taking the complex conjugate and
Tmeans the transpose.

Combination of Eqs. (19) and (26) gives now the scattered
field. This type of approximation is known as the Quasi-Linear
(QL) approximation [12]. Unlike QA, no approximations about the
background field are introduced (besides the common assumption of
no cross-polarization) and the QL-technique is therefore more accurate.
However, the computational effort is also larger as can be seen directly
from Eq. (26). In the original work [12] the QL-method was introduced
as a (least-squares) minimum-norm type of solution which can be
applied to a general model. However, in more general cases involving
non-diagonal scattering tensors, the computational burden will be
significant. In this paper we have therefore chosen to limit our
discussion to the most computational attractive versions of QL.

In the QL-method the scattered field is approximated based on the
behaviour of the background field as shown in Eq. (19). In this paper
we propose a possible further improvement in case of close sources
and/or anisotropy by replacing Eq. (19) with (by analogy with Eq. (8)):

Ēs(�r ) = χ
′
QL · ĒB(�r ) = AB · ξ̄′QL (27)

and again solve for the reflectivity tensor by assuming diagonal form
and a least-squares solution. It is straightforward to show that the
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solution now reads:

ξ̄′QL =


 J∑

j=1

B∗T
B,j ·BB,j



−1

·


 J∑

j=1

B∗T
B,j · ĒB,j


 (28)

with the matrix BB defined as:

BB(�r ) = AB(�r ) − GD(∆σ ·AB) (29)

This modification represents the same type of computational burden
since the scattered Born field ĒB has to be computed in the original
QL-method as well (cf. Eq. (26)).

In cases where one component of the background field is zero inside
the anomalous region, this implies a zero value of the corresponding
scattered Born field component (cf. Eq. (15)). Consequently,
approximating the scattered field employing Eqs. (19) or (27) also
implies a zero value of the corresponding scattered field
component. Such a limitation imposed on the scattered field can give
inaccurate estimates for complex models. To handle such cases one can
make use of similar ideas as employed within well-log modelling and
assume that the scattered field is linear proportional to the absolute
value of the background field [23]. Hence, Eq. (19) is replaced by:

Ēs(�r ) = χ
′′
QL ·

∣∣Ēb(�r )
∣∣ = A · ξ̄′′QL (30)

with the matrix A defined as:

A =

[|Eb| 0 0
0 |Eb| 0
0 0 |Eb|

]
= |Eb| I (31)

and
∣∣Ēb

∣∣ being the magnitude of the background field.
It is straightforward to show that the solution now reads:

ξ̄′′QL =


 J∑

j=1

B∗T
j ·Bj



−1

·


 J∑

j=1

B∗T
j · ĒB,j


 (32)

where the matrix B takes the form:

B(�r ) = |Eb(�r )| I − GD(∆σ · |Eb(�r )| I) (33)

Approximation # 3: DTA-type
In this paragraph we will consider an approximation technique

which is closely related to the QL-method, but avoids the least-squares
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formulation. Hence, this time we assume that Eq. (20) is ‘exact’, i.e.,
we write (renaming the reflectivity tensor and making use of Eq. (22)):

Ab · ξ̄DTA = GD(∆σ ·Ab) · ξ̄DTA + ĒB ⇒ Bb · ξ̄DTA = ĒB (34)

which gives the following expression for the scattered field assuming
direct solution (by analogy with Eq. (19)):

Ēs = Ab · ξ̄DTA = AbB
−1
b · ĒB (35)

Equation (35) is known in the literature as the Diagonal Tensor
Approximation (DTA) [13]. Alternatively, if Eq. (34) had been solved
employing normal-equation form (pseudo-inverse) we had obtained by
analogy with QL:

ξ̄DTA,LS =
[
B∗T

b Bb

]−1 [
B∗T

b ĒB

]
(36)

which is to be compared with Eq. (26).
Note that DTA is closely related to QA, but has the potential of

being slightly more accurate. This can be demonstrated as follows.
Assuming a diagonal dyadic Greens function as well as contrast
function implies that

GD(∆σAb) = AB (37)

which when combined with Eq. (34) and compared with Eq. (18) gives

(Ēs =)Ab · ξ̄DTA = AB · ξ̄QA (38a)

since matrices Ab and AB are diagonal and

AB [Ab −AB]−1 · Ēb(�r ) ≡ Ab [Ab −AB]−1 · ĒB(�r ) (38b)

Hence, QA and DTA give now identical results for the scattered field
approximation.

By analogy with the extended QL-case (cf. Eq. (27)) we propose
here a possible further improvement for close sources and/or anisotropy
by assuming

Ēs(�r ) = χ
′
DTA · ĒB(�r ) = AB · ξ̄′DTA (39)

and solve for the scattering tensor again assuming diagonal form. The
solution can now be explicitly written as:

ξ̄′DTA = (BB)−1 · ĒB (40)
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with the matrix BB defined in Eq. (29). There is virtually no increase
in the computational effort since the scattered Born field ĒB must be
determined also in the original version of DTA.

For completeness we also discuss the case of avoiding non-physical
scattering fields in case of zero-valued components of the background
field. Hence, by analogy with Eq. (30) we postulate

Ēs(�r ) = χ
′′
DTA ·

∣∣Ēb(�r )
∣∣ = A · ξ̄′′DTA (41)

It is again straightforward to show that the solution now reads:

ξ̄′′DTA = (B)−1 · ĒB (42)

with the matrix B defined by Eq. (33).
If we assume slowly varying magnitude of the background field,

the matrix B can be approximated as (also making use of Eq. (9))

B(�r ) = |Eb(�r )| I − GD(∆σ · |Eb(�r )| I) ∼= |Eb(�r )|
[
I − GD(∆σ)

]
≡ |Eb(�r )|Γ

−1

QA (43)

Finally, by combining Eqs. (41)–(43) we obtain

Ēs = A · ξ̄′′DTA
∼= 1

|Eb(�r )|AΓQA · ĒB =
1

|Eb(�r )|A · Ēs,QA = Ēs,QA

(44)

where Ēs,QA represents the scattered-field approximation employing
the (source-independent) QA-method as given by Eq. (8). Hence,
Eq. (44) represents a link between the source-independent and source-
dependent scattering tensor theories. We can also obtain similar
insight by assuming a slowly varying background field in Eq. (34):

Ab · ξ̄DTA = GD(∆σ ·Ab) · ξ̄DTA+ĒB
∼= GD(∆σ) ·Ab · ξ̄DTA+ĒB ⇒

Γ
−1

QA ·Ab · ξ̄DTA = ĒB

(45)

By analogy with Eq. (35) the scattered field is now approximated as:

Ēs = Ab · ξ̄DTA = Ab ·A−1
b · ΓQA · ĒB = Ēs,QA (46)

in correspondence with Eq. (44). Eqs. (44) and (46) do show that
a source-independent and a source-dependent scattering theory meet
when the background-field (e.g., source-field) do not vary (or slowly
varies), which is a reasonable result indeed.
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3.3. Source-dependent Scattering Factor

In this paragraph we simplify the source-dependent scattering tensor
further and replace it with a scalar factor. Such a case corresponds to
both an isotropic and fairly weak scatterer with no severe EM coupling.
We consider this limiting case for all the three main approximations
discussed in the previous section.
Approximation # 1: QA-type

The limiting case of Eq. (15) will be

ĒB(�r ) ∼= ς(�r )Ēb(�r ) (47)

According to Eq. (47) a reasonable expression for the scalar scattering
factor will be

ς(�r ) =
ĒB · Ē∗

b

Ēb · Ē∗
b

(48)

By analogy with Eqs. (8) and (9) we now have

Ēs(�r ) =
1

1 − ς(�r )
ĒB(�r ) ≡ λQA(�r )ĒB(�r ) (49)

where

λQA(�r ) =
Ēb · Ē∗

b

Ēb · Ē∗
b −ĒB · Ē∗

b

=
Ēb · Ē∗

b

∆Ē · Ē∗
b

=
∆Ē∗ · Ēb

∆Ē∗ · ∆Ē
, ∆Ē = Ēb−ĒB

(50)

Since Eq. (50) also includes computation of the scattered Born field,
QA should always be preferred to EBA/LN in this case (same
arguments as for the diagonal-tensor case).
Approximation # 2: QL-type

The limiting case of Eq. (20) can be written as (assuming slow
variation of scattering factor)

λQL(�r ) · Ēb(�r ) ∼= GD(∆σ · Ēb) · λQL + ĒB(�r ) = ĒB(�r ) · λQL+ĒB(�r )
(51)

Since the scattering tensor is approximated by a scalar (implying an
isotropic and weak scatterer), the contrast function ∆σ should also be
close to a scalar by consistency.

By considering a grid of receiver points �rj , j = 1, 2, . . . J
representing a (smaller or larger) subdomain inside D, we can
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determine λQL as the linearized fit in a least-squares sense of the
‘observations’:

ĒB(�rj) = λQL ·
(
Ēb(�rj) − ĒB(�rj)

)
= λQL · ∆Ē(�rj) (52)

with the solution [12]

λQL =

J∑
j=1

∆Ē∗(�rj) · ĒB(�rj)

J∑
j=1

∆Ē∗(�rj) · ∆Ē(�rj)

(53)

Based on the solution of Eq. (53) the scattered field inside the
anomalous region is approximated as

Ēs(�r ) = λQL(�r )Ēb(�r ) (54)

By analogy with earlier discussions a possible further improvement of
the QL-approximation in case of close sources can be to alternatively
assume

Ēs(�r ) = λ′
QL(�r )ĒB(�r ) (55)

which corresponds to the LS-solution

λ′
QL =

J∑
j=1

∆Ē∗
n(�rj) · ĒB(�rj)

J∑
j=1

∆Ē∗
n(�rj) · ∆Ēn(�rj)

(56)

where the quantity ∆Ēn is given by the expression:

∆Ēn(�r ) = ĒB(�r ) − GD(∆σ · ĒB) = ĒB(�r ) − Ē′
B(�r ) (57)

and E′
B is the scattered field corresponding to the second-order Born

approximation [22].
Approximation # 3: DTA-type

In order to make the analysis as complete as possible we also
investigate here the limiting case of DTA. Hence, we assume that
Eq. (34) is ‘exact’ (renaming the scattering tensor):

λDTA(�r ) · Ēb(�r ) = ĒB(�r ) · λDTA + ĒB(�r ) (58)
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which has the solution

λDTA(�r ) =
ĒB(�r )

Ēb(�r ) − ĒB(�r )
=

ĒB(�r )
∆Ē(�r )

=
∆Ē∗(�r ) · ĒB(�r )
∆Ē∗(�r ) · ∆Ē(�r )

(59)

and when compared with Eq. (53) shows that unlike the QL-approach
DTA involves no averaging. Also by comparing Eqs. (50) and (59) we
see that DTA and QA now give exactly the same result, i.e.,

(Ēs =)λDTAĒb = λQAĒB (60)

For completeness and by analogy with Eq. (55) we look for a possible
improvement (especially for close sources) by postulating

Ēs(�r ) = λ′
DTA(�r )ĒB(�r ) (61)

which (by analogy with Eq. (56)) gives the solution

λ′
DTA(�r ) =

∆Ē∗
n(�r ) · ĒB(�r )

∆Ē∗
n(�r ) · ∆Ēn(�r )

(62)

with the quantity ∆Ēn defined in Eq. (57) and interpreted as the
residual Born field (e.g., difference between the first-order and second-
order Born approximation of the scattered field).

4. ITERATIVE SOLUTIONS

4.1. MIDM-equation

For a medium with significant conductivity contrasts as well as strong
anisotropy higher-order schemes can be useful. The value of the
lowest-order term (initial value) can then be determined employing
the solutions described in the previous section (e.g., non-iterative
solutions). As discussed by many authors [14–16], constructing
iterative versions of Eq. (5) will not in general ensure convergence.
Especially for cases involving larger conductivity contrasts, the
operator GD[.] is no longer stable. The idea is then to introduce a
so-called contrastive operator according to the definition:

Gc
D(x̄) =

√
σbGD(2

√
σbx̄) + x̄ (63)

which is characterized by

‖Gc
D(x̄)‖ ≤ ‖x̄‖ (64)



Progress In Electromagnetics Research, PIER 76, 2007 89

Combination of Eqs. (5) and (63) gives the scattering equation of the
iterative dissipative method (MIDM) [14, 15]

α · Ēs(�r ) = Gc
D(β · α · Ēs) +

√
σbĒB(�r ) = Oc

D(α · Ēs) +
√
σbĒB(�r )

(65)

where

α =
∆σ + 2σb

2
√
σb

, β =
∆σ

2σbI + ∆σ
(66)

In Eq. (65) the operator Oc
Dis also well behaved since it follows

directly from Eq. (66) that we always have
∥∥∥β∥∥∥ < 1. Based on the

method of successive iterations (von Neumann series) the iterative
version of Eq. (65) can be constructed as [14, 15]:

α·Ē(n)
s (�r ) = Oc

D

(
α·Ē(n−1)

s

)
+
√
σbĒB(�r )=Gc

D

(
β ·α·Ē(n−1)

s

)
+
√
σbĒB(�r ), n = 1, 2, 3 . . . (67)

When Eq. (67) is applied in the context discussed in this paper, only
few iterations are considered. (Note however that Eq. (67), even
though being convergent, does not represent the most efficient solution
to the exact problem and Krylov subspace iteration methods should
then be employed [4, 5, 24]). Different higher-order approximations
employing Eq. (67) are obtained depending on the choice of the initial
value:

• Higher-order Modified Born (MB) [16]:

Ē(0)
s = 0 (68a)

• Higher-order QA:

Ē(0)
s (�r ) = ΓQA · ĒB(�r ) (68b)

• Higher-order EBA:

Ē(0)
s (�r ) = ΓEBA · Ēb(�r ) (68c)

• Higher-order DTA:

Ē(0)
s (�r ) = χDTA · Ēb(�r ) (68d)



90 Gelius

• Higher-order QL:

Ē(0)
s (�r ) = χQL · Ēb(�r ) (68e)

Note that in case of QA and EBA both source-independent and data-
dependent (e.g., diagonal) versions of the scattering tensor may be
employed. To further enhance the accuracy of DTA and QL (and
possible reduce number of iterations), one may use the extensions
proposed in this paper.

Combination of Eqs. (63) and (67) gives the alternative writing of
the iterative MIDM-equation:

α · Ē(n)
s (�r ) = α · Ē(n−1)

s (�r )

+
√
σb

[
GD

(
∆σ · Ē(n−1)

s

)
+ĒB(�r ) − Ē(n−1)

s (�r )
]
, n = 1, 2, 3 . . . (69)

where all terms inside the brackets will cancel in case of an exact
solution (follows directly from Eq. (5)).

4.2. High-order Hybrid Scheme

When employing Eq. (69) to compute approximate scattered field
solutions, the idea is that only few iterations should be used. However,
for complex models several iterations can be needed to arrive at a good
convergence. The question is then if Eq. (69) can be modified in a way
so that faster convergence is obtained in case of few iterations. This
alternative approach should still honour the physics of the problem.
We split now the operator GD in a ‘singular’ and a ‘non-singular’ part
and rewrite Eq. (5) as follows:

Ēs(�r ) = ĒB(�r ) + GD(∆σ · Ēs) − GDs(∆σ · Ēs) + GDs(∆σ · Ēs)
(70)

with Ds representing a sub domain of the total volume D including
the singularity in the dyadic Green’s function when �r → �r0. This
subdomain can be chosen very locally and consequently represent
a rather small computational effort. Assume now that the electric
field is stationary within this sub domain, so that Eq. (70) can be
approximated as follows[
I−GDs(∆σ)

]
· Ēs(�r ) ∼= ĒB(�r ) + GD(∆σ · Ēs)−GDs(∆σ) · Ēs(�r ) =[

I−GDs(∆σ)
]
· Ēs(�r ) +

[
GD(∆σ · Ēs) + ĒB(�r ) − Ēs(�r )

]
(71)
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and further rearranged as:

ϑ · Ēs = ϑ · Ēs +
[
GD(∆σ · Ēs) + ĒB − Ēs

]
(72)

with

ϑ =
[
I − GDs(∆σ)

]
(73)

For a homogeneous and isotropic medium, ϑ can be efficiently
computed employing analytical techniques [25]. It follows from Eqs.
(69) and(72) that ϑ can be regarded as the counterpart of α/

√
σb.

Representing Ds by a small sphere [25] gives GDs(∆σ) ∼= −∆σ/3σb,
and consequently ‖ϑ‖ < ‖α/√σb‖ for ∆σ > 0. Applying the method of
successive iterations to Eq. (72) does not guarantee any convergence.
However, a hybrid scheme can be constructed as

Ēs = Ē(m)
s + ϑ

−1
·
[
GD(∆σ · Ē(m)

s ) + ĒB − Ē(m)
s

]
, m = 0, 1, . . .

(74)

For m = 0, one of the solutions given by Eqs. (68a)–(68e) are chosen for
Ē

(0)
s on the right-hand side of Eq. (74), and for higher order (m > 1)

Ē
(m)
s is computed from (69) ensuring convergence.

Alternatively, one can consider the total field instead of the
scattered field, and obtain the corresponding counterpart of Eq. (74):

Ē = Ē(m) + ϑ
−1

·
[
GD(∆σ · Ē(m)) + Ēb − Ē(m)

]
, m = 0, 1, . . .

(75)

A similar scheme to that in Eq. (75) has been introduced by Gao
and Torres-Verdin [17] and is denoted High-Order Generalized Born
Approximation (Ho-GEBA).

If we let Ds → D, then it follows from Eq. (74) (making use of
Eq. (9)):

Ēs = Ē(m)
s + ΓQA ·

[
GD(∆σ · Ē(m)

s ) + ĒB − Ē(m)
s

]
, m = 0, 1, . . .

(76)

which represents another alternative scheme. But the scattering tensor
ΓQA is not as computationally attractive as ϑ. In the QA-limit (cf.
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Eq. (6)), Eq. (76) gives us a link between iterative and non-iterative
theories, e.g.,

Ēs = Ē(m)
s + ΓQA ·

[
GD(∆σ · Ē(m)

s ) + ĒB − Ē(m)
s

]
∼= Ē(m)

s + ΓQA ·
[
GD(∆σ) · Ē(m)

s + ĒB − Ē(m)
s

]
=

Ē(m)
s + ΓQA ·

[
−Γ

−1

QA · Ē(m)
s + ĒB

]
= ΓQA · ĒB (77)

as expected.

5. CONCLUDING REMARKS

By introducing a common framework of analyses, we have been able to
reveal similarities and links between various proposed EM scattering
approximations in a simple manner. Both source-dependent and
source-independent scattering theories have been investigated in a
systematic manner, as well as their possible higher-order extensions.
Based on new insights obtained we have been able to bridge the
apparent gap between some of the approaches as well as proposing
possible extensions and refinements.
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